A 53 l_
ARMY RESEARCH [ABORATORY ‘ | R

Nonlinear Eulerian Thermoelasticity for Anisotropic
Crystals

by John D. Clayton

ARL-RP-454 August 2013

A reprint from the Journal of the Mechanics and Physics of Solids,
Vol. 61, pp. 1983-2014, 2013.

Approved for public release; distribution is unlimited.



NOTICES
Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.



Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5069

ARL-RP-454 August 2013

Nonlinear Eulerian Thermoelasticity for Anisotropic
Crystals

John D. Clayton
Weapons and Materials Research Directorate, ARL

A reprint from the Journal of the Mechanics and Physics of Solids,
Vol. 61, pp. 1983-2014, 2013.

Approved for public release; distribution is unlimited.
]



Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE
August 2013 Reprint

3. DATES COVERED (From - To)
October 2012—July 2013

4. TITLE AND SUBTITLE
Nonlinear Eulerian Thermoelasticity for Anisotropic Crystals

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

John D. Clayton

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Research Laboratory

ATTN: RDRL-WMP-C

Aberdeen Proving Ground, MD 21005-5069

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-RP-454

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
A reprint from the Journal of the Mechanics and Physics of Solids, Vol. 61, pp. 1983-2014, 2013.

14. ABSTRACT

A complete continuum thermoelastic theory for large deformation of crystals of arbitrary symmetry is developed. The theory
incorporates as a fundamental state variable in the thermodynamic potentials what is termed an Eulerian strain tensor (in
material coordinates) constructed from the inverse of the deformation gradient. Thermodynamic identities and relationships
among Eulerian and the usual Lagrangian material coefficients are derived, significantly extending previous literature that
focused on materials with cubic or hexagonal symmetry and hydrostatic loading conditions. Analytical solutions for
homogeneous deformations of ideal cubic crystals are studied over a prescribed range of elastic coefficients; stress states and
intrinsic stability measures are compared. For realistic coefficients, Eulerian theory is shown to predict more physically realistic
behavior than Lagrangian theory under large compression and shear. Analytical solutions for shock compression of anisotropic
single crystals are derived for internal energy functions quartic in Lagrangian or Eulerian strain and linear in entropy; results are
analyzed for quartz, sapphire, and diamond. When elastic constants of up to order four are included, both Lagrangian and
Eulerian theories are capable of matching Hugoniot data. When only the second-order elastic constant is known, an alternative
theory incorporating a mixed Eulerian—Lagrangian strain tensor provides a reasonable approximation of experimental data.

15. SUBJECT TERMS
elasticity, finite strain, shock compression, ceramics

17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF: OF ABSTRACT OF PAGES John D. Clayton
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
Unclassified Unclassified Unclassified uu 38 410-278-6146

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 239.18




Journal of the Mechanics and Physics of Solids 61 (2013) 1983-2014

Contents lists available at SciVerse ScienceDirect el
Journal of the Mechanics and Physics of Solids
journal homepage: www.elsevier.com/locate/jmps /;’lf
Nonlinear Eulerian thermoelasticity for anisotropic crystals ®<:mssMaﬂ<

J.D. Clayton *

Impact Physics, RDRL-WMP-C, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5066, USA

ARTICLE INFO

Article history:

Received 16 January 2013
Received in revised form

24 May 2013

Accepted 30 May 2013
Available online 11 June 2013

Keywords:
Nonlinear elasticity
Finite strain
Anisotropy
Crystals

Shock physics

ABSTRACT

A complete continuum thermoelastic theory for large deformation of crystals of arbitrary
symmetry is developed. The theory incorporates as a fundamental state variable in the
thermodynamic potentials what is termed an Eulerian strain tensor (in material
coordinates) constructed from the inverse of the deformation gradient. Thermodynamic
identities and relationships among Eulerian and the usual Lagrangian material coefficients
are derived, significantly extending previous literature that focused on materials with
cubic or hexagonal symmetry and hydrostatic loading conditions. Analytical solutions for
homogeneous deformations of ideal cubic crystals are studied over a prescribed range of
elastic coefficients; stress states and intrinsic stability measures are compared. For
realistic coefficients, Eulerian theory is shown to predict more physically realistic behavior
than Lagrangian theory under large compression and shear. Analytical solutions for shock
compression of anisotropic single crystals are derived for internal energy functions quartic
in Lagrangian or Eulerian strain and linear in entropy; results are analyzed for quartz,
sapphire, and diamond. When elastic constants of up to order four are included, both
Lagrangian and Eulerian theories are capable of matching Hugoniot data. When only the
second-order elastic constant is known, an alternative theory incorporating a mixed
Eulerian-Lagrangian strain tensor provides a reasonable approximation of experimental
data.

Published by Elsevier Ltd.

1. Introduction

Nonlinear continuum thermoelasticity provides a physical description of behavior of crystalline solids in the study of
acoustic and shock waves, ballistic impact, and high-pressure geophysics problems. For extremely high pressure events,
much work has focused on development of scalar equations of state, e.g., scalar relations among pressure, volume, entropy,
and temperature and associated thermodynamic (energy) potentials. For ductile substances (e.g., many metals) and those
that fracture easily, such a description is sufficient in many cases wherein the deviatoric stress (i.e., shear components) are
restricted in magnitude due to plastic slip, twinning, or fracture that limit shear strength to a small fraction of the applied
pressure. However, some crystalline materials such as ceramics and hard minerals may retain significant shear strength at
finite strain under high pressure loading, e.g., as observed in plate impact or explosive loading (Wackerle, 1962; Fowles,
1967; Graham and Brooks, 1971; Kondo and Ahrens, 1983; Lang and Gupta, 2010). In these cases, a three-dimensional tensor
theory of nonlinear thermoelasticity is required. Furthermore, apart from exceptional cases such as hydrostatic loading of
cubic crystals, material anisotropy must be addressed in descriptions of single crystal behavior.
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The present work distinguishes among theories based on what are labeled Lagrangian and Eulerian finite strain
measures. Let x denote the time-dependent spatial position of a material element located at point X in the undeformed
body. The deformation gradient is F = Vgx, where V, is the material gradient operator and x=x(X,t). The inverse
deformation gradient is F~! = VX, with V the spatial gradient and the inverse motion X = X(x, t). The ratio of current to
initial volume of the element is | =V /V, = det F; inverting this gives ]! =V,/V =det F~!. A theory whose independent
state variable entering the thermodynamic potentials is constructed from stretch raised to some positive power/exponent is
labeled here as “Lagrangian”; a theory utilizing stretch raised to some negative power/exponent is labeled here as
“Eulerian”. This terminology will be explained in more detail later by example.

Let a superscript T denote transposition. Conventional nonlinear elasticity for crystalline solids (Wallace, 1972; Thurston,
1974; Clayton, 2011a) incorporates the Lagrangian strain measure E(X,t) = %(FTF—I), often called the Green-St. Venant
tensor or simply the Green strain, in the thermodynamic potentials. This approach, when elastic constants of up to third
order are included, has been successful for modeling many crystalline solids under compression V/V(>0.95, including
ceramics and pure minerals (Winey and Gupta, 2004; Clayton, 2009, 2011b; Foulk and Vogler, 2010; Clayton et al., 2012),
metals (Clayton, 2005a,b, 2006; Vogler and Clayton, 2008), and locally heterogeneous geologic materials (Clayton, 2008,
2010a), but its accuracy degrades at larger compressions (smaller volume ratios) possible in shock loading or ballistic events.
In such cases, elastic constants of order four and higher, difficult to measure and unknown for most anisotropic crystals, may
be needed (Thurston, 1974).

For hydrostatic compression of cubic crystals or isotropic polycrystalline solids, it has been shown (Birch, 1978; Jeanloz,
1989) that pressure-volume equations of state incorporating Eulerian volumetric strain measures, i.e., a series of term(s)
consisting of V/V raised to some positive exponent, are almost always more accurate than those incorporating Lagrangian
measures [i.e., dominant term(s) consisting of V/V, raised to some positive exponent] when each representation contains
the same number of bulk elastic constants. A canonical example of an Eulerian description is the Birch-Murnaghan EOS
(Birch, 1947, 1978; Murnaghan, 1951) which often demonstrates high accuracy even when truncated at second order and at
third order is often almost indistinguishable from the linear shock velocity-particle velocity relation that applies
exceptionally well for many shock-compressed solids (Jeanloz, 1989).

The Birch-Murnaghan EOS is by definition restricted to pressure-volume space. A complete description for all stress
states requires a tensor formulation. For single crystals, as well as textured polycrystals and composites, this formulation
must account for anisotropy. A mathematically and thermodynamically consistent way to construct such a description is to
assign scalar thermodynamic potentials (e.g., free energy or internal energy) that are irreducible functions of requisite
invariants of an objective finite strain tensor for the given material's symmetry. By conjecture, extending arguments for
Eulerian equations of state to arbitrary stress states and anisotropic solids, it is proposed that thermodynamic potentials
incorporating an Eulerian strain measure, as defined above, will provide analogous advantages in six-dimensional stress—
strain space as Eulerian equations of state provide in pressure-volume space.! For example, if the analogy holds as
anticipated, Eulerian theory with elastic constants of up to order two might provide comparable accuracy as Lagrangian
theory with constants of up to order three. Higher-order elastic constants are difficult to measure-standard tests include
wave speed measurements in stressed crystals (Thurston, 1974; Thurston et al., 1966; Hankey and Schuele, 1970) or costly
shock compression experiments in multiple directions (Graham and Brooks, 1971; Graham, 1972a, 1972b)-and have been
reported for few low-symmetry materials. Third-order constants can also be predicted via first principles calculations (Zhao
et al., 2007). Therefore, any theory that alleviates the need for measurements or atomic calculations of elastic constants
above a certain order would be valuable.

The present paper develops a theory that incorporates Eulerian finite strain tensor D(x, t) = %(1—F‘1F‘T), suggested (but
not implemented) for describing elasticity of anisotropic solids by Murnaghan? and perhaps first implemented in
calculations (of stressed cubic crystals) by Thomsen (1972). Because D has components referred to the reference coordinate
system, it is invariant under spatial rotations (Davies, 1973), and can be used in elastic potentials for anisotropic bodies.
Because D is symmetric and referred to material coordinates, functional forms of thermoelastic potentials for anisotropic
materials expressed in terms of D will be the same as those in terms of E (Thomsen, 1972; Weaver, 1976). For example,
elastic constant tensors of all orders will have the same symmetries, though magnitudes of higher-order constants will differ
between the two theories. Transformation formulae can be derived relating material constants of the two theories (Weaver,
1976; Perrin and Delannoy, 1978), obviating the need for additional experiments or quantum calculations if Lagrangian
constants have already been obtained.

Further clarification of terms “Lagrangian” and “Eulerian” is in order. In this paper, a “Lagrangian” strain refers to a tensor
depending on principal stretch ratios raised to some positive exponent, while an “Eulerian” strain refers to a tensor
depending on principal stretch ratios raised to some negative exponent. This is consistent with terminology adopted in the
physics and chemistry literature (Thomsen, 1972; Weaver, 1976; Perrin and Delannoy, 1978; Davies, 1974; Nielsen, 1986).
According to this scheme D is labeled “Eulerian” in the sense that it is constructed from the inverse deformation gradient
F'(x,t) (precisely, right stretch U raised to the —2 power) and its field is implicitly a function of spatial coordinates ,

! This conjecture is later shown to be true for ideal cubic solids with an ambient pressure derivative of bulk modulus By~4, but not necessarily true for
shock compression of highly anisotropic single crystals.
2 Murnaghan (1937, p. 257) proposed a strain energy depending on deformation measure j = 1-2D.
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even though indices of D are referred to a material coordinate system (associated with X). In contrast, according to
conventions often used in continuum mechanics literature, a tensor is said to be “Lagrangian” if it is referred to material/
initial coordinates and “Eulerian” if referred to spatial/current coordinates. According to this scheme D would be Lagrangian,
while E would be Lagrangian in either scheme (right stretch U raised to the +2 power, and expressed in material
coordinates). Almansi strain e(x,t) = 1 (1-F ~TF~1) entering Murnaghan's (1937) theory for isotropic solids would be Eulerian
according to either scheme. The negative of tensor D has been referred to elsewhere as Piola strain (Haupt, 2000).

Recent work (Clayton and Bliss, submitted for publication) has demonstrated that under finite shear, isotropic E—based
Lagrangian theory is prone to intrinsic instability in terms of attainment of null eigenvalue(s) of an incremental stiffness
matrix (Wang et al., 1993; Morris and Krenn, 2000) with increasing magnitude of third-order elastic constants, regardless of
their sign. This is often referred to as a “Born instability” (Thomsen, 1972; Born, 1940), though different elastic stiffness
tensors for perfect crystals have been suggested as most appropriate depending on boundary conditions (Hill, 1975; Hill and
Milstein, 1977). While certain crystals such as quartz (Gregoryanz et al., 2000) and boron carbide (Clayton, 2012, 2013) can
demonstrate true physical instabilities, in a model such instabilities should result from material physics rather than
pathologies associated with extrapolation of a strain-based theory to large deformations outside the domain for which
elastic properties have been measured.

Benefits of using Eulerian strain measures for nonlinear elasticity of isotropic materials were extolled by Murnaghan
(1937) in the 1930s and were demonstrated for cubic crystals under hydrostatic stress by Birch (1947). Thermal effects were
considered later in a D—based Eulerian formulation (Davies, 1974), and a mechanical theory for several non-cubic crystals
incorporating D was initiated and exercised in the late 1970s (Weaver, 1976; Perrin and Delannoy, 1978). With the exception
of the early works of Murnaghan and Birch, these Eulerian treatments remain obscure, and theoretical developments and
comparisons with experiment are limited to hydrostatic pressure loading. Nonetheless, the Eulerian framework has
demonstrated superior accuracy over Lagrangian theory for predicting the hydrostatic isothermal response of a few
anisotropic crystals (Weaver, 1976; Perrin and Delannoy, 1978). Despite such promise, Eulerian D—based thermoelasticity
theory has not been completely developed for crystals of arbitrary anisotropy, and until now has been untested for general
non-hydrostatic stress states. In the present work, the theory is fully developed and is applied to several loading protocols,
including adiabatic uniaxial strain conditions (involving simultaneous shear and compression) characteristic of shock-wave
problems (Thurston, 1974; Perrin and Delannoy-Coutris, 1983).

The remainder of this paper is structured as follows. Derivations are presented in parallel for Eulerian and Lagrangian
theories in Section 2, including governing equations, thermodynamic identities, intrinsic stability criteria, and material
coefficients. Analytical solutions for homogeneous deformations of a cubic crystal are examined in Section 3. These
solutions, which apparently have not been given elsewhere, apply for cubic crystals with fully anisotropic second-order
elasticity but symmetrized anharmonicity characterized by a single third-order constant. A new solution is derived in
Section 4 for shock compression of a single crystal of arbitrary symmetry described by fourth-order Eulerian theory.
Predictions of this solution are compared with those of the Lagrangian solution for three materials which remain elastic
under large uniaxial compression: quartz, sapphire, and diamond. Conclusions are given in Section 5. Appendices contain
supporting material on kinematics and thermomechanics. Standard notation of continuum field theory is used: vectors and
tensors are generally written in bold italic; when indicial notation is used, components of vectors and tensors are referred to
a Cartesian frame of reference and are written in plain italic, with summation over repeated indices.

2. Theory
2.1. Nonlinear continuum mechanics of hyperelastic solids

Spatial coordinates are related to reference coordinates by the motion x = x(X, t). The deformation gradient F and its
determinant are>

F=Vyx (F,'_,:a])(j), ]=detF>0. 2.1
Let P(X,t) and o(x,t) denote, respectively, first Piola—Kirchhoff and Cauchy stress:

P=]oF"; Py=]JoyFy = %“ikakxﬁ (2.2)

Let (-)=a(-)/dt|x denote the material time derivative and v particle velocity. Balance of linear momentum in the absence of
body force and balance of angular momentum are

Vo - P= pol); a_]P,'] = po).z,'; (23)

PF' =FP"; PyF,; =PyFy. (2.4)

3 See Appendix A for a thorough discussion of kinematics.
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Let ¥ denote Helmoltz free energy per unit initial volume, and let 6 and 5 denote absolute temperature and entropy per
initial volume. Internal energy density U obeys

U=¥+0n (2.5)
The following usual functional forms are assumed for homogeneous solids:
¥ =¥(F,0), U=U(F,n). (2.6)

Dependence on F will be replaced later by dependence on symmetric strain measures that respect rotational invariance of
the thermodynamic potentials.
The local balance of energy, in the absence of scalar heat sources, is

U=P:F-Vo-Q; U=Pyo%—-0,Qy; 2.7
with Q the referential heat flux vector. The local entropy production inequality is

i+ Vo - (071Q)20; i + 3;Q—07'Q;9;6=0. (2.8)
Using (2.5) and (2.7) in (2.8),

P:F—n-¥-671Q - v40>0. (2.9)
Substituting from the first of (2.6),

(P—0¥ /oF) : F—(yy + 0¥ /00)0—Q - V6>0, (2.10)

from which the usual constitutive equations of hyperelasticity can be deduced:
P=0¥/oF, n=—0¥/db. (2.11)
From (2.5), (2.6) and letting 60 = 0(F, n),

ou _o¥ ored o0 oU_ ovee & 2.12)
OF ~ oF " 00oF ""oF" o ~o0on "oy '

Then, from the second of (2.11), it follows that
P=0U/oF, 0=0aU/on. (2.13)

2.2. Lagrangian and Eulerian variables

Lagrangian Green strain E(X,t) is defined as
E=3(F'F-1);  Ej=}0xdX—dy). (2.14)
Eulerian strain D(x, t) is defined as
D=1A-F'F"); Dy=6y-oXiaX)). (2.15)

Considered in parallel are two thermoelastic formulations more specific than (2.6), one based on E and termed “Lagrangian”,
the other based on D and termed “Eulerian”:

¥ = V[E(F),0l, U=UIEF)n); (2.16)

¥ = P[D(F),6], U=U[D(F),n)]. 2.17)

These thermodynamic potentials are all invariant under spatial rotations since both E and D are referred to the material
coordinate system. First Piola-Kirchhoff stress in the Lagrangian description is, from (2.11), (2.13), and (A.8),

k. = %% = kj% =qu% =FySpL. (2.18)
Second Piola-Kirchhoff stress is

S = 0¥ JoEy, = oU /oEy, = Fy! Py = JFy Fiil o1 (2.19)
First Piola-Kirchhoff stress in the Eulerian description is, from (2.11), (2.13), and (A.13),

a¥ oDy

_ o oU i qe
K= 3Dy oF Fi! (5]L—2D]L)@ =Fy! (5]L—2DJL)ﬂ = Fi FinFpmSy- (2.20)

The Eulerian analog of second Piola-Kirchhoff stress is

Sy = 0% /oDy, = oU /oDy, = FyyFiFinPias = FigFinFiFineSnv = JFyFia ok (2.21)
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Cauchy stress becomes, from (2.2),

1p-1p-1 3'1”

Oij :]_ FicFj1 —— 0E =] Fy L] 0D 2.22)
Let ¢(F,0) =c(E,0) = ¢(D, 0) denote specific heat per unit reference volume at constant deformation, where from (2.11):

c=0U/06 = 6(dn/00) = —6(*¥ | 06°). (2.23)
The rate of internal energy can be expanded as

U = (0U/oF) : F + (oU /o)y =P : F + 6[(on/oF) : F + (on/00)8]. (2.24)
Substituting (2.24) and (2.23) into (2.7) leads to

O =6(0*¥ /oFo0) : F-V, - Q. (2.25)
Defining thermal stress coefficients B(E, 0) and g(D,0) as

B =0n/oE = —*¥ J0E00, f = on/oD=—3*¥ /oDoo; (2.26)

PP [000Fy = —py = —Py Fi = —Bra Fil FomFpm: (2.27)
and using (A.20), (2.25) can be written as

to=-0f:E-Vy-Q, ¢6=-6p:D-Vy-Q. (2.28)
Second-order tensor Griineisen parameters are defined as

T'=p/c, ['=p/c (2.29)
The following Maxwell-type equalities can be derived using procedures in Thurston (1974) and Clayton (2011a):

or = (8/c)(on/0E) = —dS /o = —00/ JE, (2.30)

oF = (0/¢)(on/0D) = —d8 /on = —00/D; (2.31)

0/ = (0/T5)(9E /00) = OE /oy = —00/3S, (2.32)

0/8%)a = (0/¢5)(0D/30) = oD /oy = —0/38; (2.33)

@ =0E/00=0y/dS, &=0D/o0=an/dS. (2.34)
Analogously to (2.26) and (2.27),

0T = —3*U /oEdy, OF =—a*U /oDan; (2.35)

0*U/onoFy = -0y = —0T . Fy = 05 i Fy Fi) . (2.36)

Defining ay; = oF); /00 at constant P, thermal expansion coefficients are related implicitly by

2ay = a(GuFy + dyFiD).  2ay = aFin(Fi Fim + Fp! Fip).- (237

Specific heats per unit volume at constant deformation (c=¢ = ¢) and constant stress (¢5=¢° = 65) obey (Thurston, 1974;
Clayton, 2011a)

€= 0(0n/00)|gp =—0(0*¥ /00°) = 0U /00, ¢ =0(dn/00)l5. (2.38)
Isothermal second-order thermodynamic elastic coefficients are
—0 _ a§1([_ _ 62? ~0 _ 051([_ _ 02"1;
UKL—EO—W, CUKL—WUo—m- (2.39)
Isentropic second-order thermodynamic elastic coefficients are
— S| U . S| U
UKL= oEy T (3E1]0EK1_’ CUKL - oDy T 0D1]0DKL. (2:40)
Thermal expansion and thermal stress coefficients are related by
— = = _ =0 = _ =0
B =(0on/oE)ly=(dn/0S)ly: (0S/dE)lg=a :C", py=axCyy- (2.41)

B =(an/aD)ly = (0n/a8)ly : (38 /E)y = : €', py=anCiy. (242)
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Specific heats per unit reference volume are related, using the procedure in Thurston (1974), as

S—c=0x:f=0&:p. (2.43)
Isentropic and isothermal coefficients are related, using Maxwell relations, by

C'" = (35 /0E)|, = (95 /9E)|, + (95 /00]5)®(00/9E)|, = C’ + (0/C)B &P, (2.44)

¢" = (8 /aD)|, = (38 /D), + (65 /001)®(060/0D)], = € + (0/)p®p. (2.45)
or in indicial notation,

=7 —_—— = A 20 A~ A

Cl}KL = EZKL +(0/OByPkis C;]]KL =Cy + (/OB yPre- (2.46)
Strain energy density, per unit reference volume, is defined as follows for a homogeneous solid:

W(F) = WIE(F)] = W[D(F)] = ¥(F, 6). (2.47)

where 6y is a fixed reference temperature. When temperature/entropy effects are omitted, second-order elastic coefficients
reduce to

C =0*W/0EoE, C =d*W /oDaD. (2.48)
Tangent modulus A(F) is defined as

A=0P/0F = 3*W /dFoF, Ay =Py /oFy = 0°W /oF;oFy,. (2.49)
Coefficients A and C are related by

Ay = 0FiuSmr)/0Fy = FinFimCnyme + 8iSi. = FinFimCmr + 5ikF],~,1 Py (2.50)
Similarly, coefficients A and € are related by

Aga = OF FonFpmSip)/0Fy = Fol Fy Fit FrmF i Fon Corip—Fi! Piu—Fp;' Pig—Fi FrnFivPin. (2.51)
Equating (2.50) and (2.51),

Cyxe = Fii' Fai Py Fyf Fit For i Fp! Cuanor—F i Fit Fpt Pru=F 3 FignFpm Pit=Fr" Fn Fii Py =Fii Fpn Fr Pt (2.52)
Relations analogous to (2.52) hold when either isothermal or isentropic coefficients are used. The local linear momentum
balance for a homogeneous elastic solid in the absence of body force becomes, with A? = 3?¥(F, 9)/dFdF,

poXi = Al 019X, Py 9)0. (2.53)
Stress power per unit reference volume is, from (A.20),

W=©@W/oF):F=P:F=S:E=S8:D=J¢:d. (2.54)

Let sW be a first-order increment in strain energy associated with deformation gradient variation sF. Then analogously
to (2.54),

5W=(6W/0F):5F=P:5F=§:5£=.§:5D=]o':5€, (2.55)
where

se=F"SEF'=FsDF"; &ej=Fy 6ExFp, = FixdDiiFi; (2.56)

SE =1 [F'6F + (5F)'F), ¢ =1[(SF)F' + F"(5F)"]. (2.57)

The first equality in each of (2.56), or the second equality of (2.57), can be used as a definition for spatial increment é&e; the
second equality in each of (2.56) is consistent with transformation formulae between sD and 6E analogous to (A.20). This
definition for e is unique when incremental deformation gradient 6F is prescribed, and is identical to that used widely
elsewhere in the analysis of internal elastic stability (e.g., Morris and Krenn, 2000, their Eq. (9)). Making the connection
SW o W dt, it follows that se < d dt. Integrated quantity J ée — [ddtis path dependent (in contrast to E or D that depend
only on current values of F or F™!), and is not used in analysis in this paper or others (Wang et al., 1993; Morris and Krenn,
2000; Hill, 1975) dealing with intrinsic stability.
Spatial modulus ¢ is defined as

Syt =J ' FuFyFicFiCria =]_1FE1F]}1FE;1 Fyi' Cya—cudix—0ibi—0idii—odi- (2.58)

The fully symmetric form of incremental tangent modulus B is (Wang et al., 1993; Morris and Krenn, 2000; Clayton, 2012)
Bijki = Cijt + 2(owdji + oudj + 018k + 0jkSi—0j0u—018y)

=J7"Fi'Fj ' Fit P! C i —(owdii + oudjic + 08 + ojxdiy + 0ij + orady). (2.59)
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Consider an elastic solid undergoing homogeneous deformation, omitting thermal effects. Intrinsic mechanical stability can
be defined as local convexity of strain energy with respect to a given strain or deformation measure (Hill, 1975; Parry, 1978;
Clayton, 2013) and therefore depends on the choice of conjugate stress—strain variables. For intrinsic stability consistent
with classical stability under all-around dead loading (Hill, 1975),

5P : 6F = 6F : (0*W /oFoF) : 6F = 6F : A : 6F > O<=det{A] > 0. (2.60)

For intrinsic stability consistent with classical stability under controlled Cauchy stress (Wang et al., 1993; Morris and Krenn,
2000),

66 : 5¢ =[(da/0E) : SE] : e = e : B : ¢ > O<det[B] > 0. (2.61)

The first two equalities in (2.61) strictly apply only when F is symmetric, but the inequalities apply regardless since since
6 x 6 matrix [B] is rotationally invariant. Symmetric coefficients By, (e.g., evaluated from isentropic thermodynamic moduli)
enter the linear momentum equation for propagation of small amplitude elastic waves from a hydrostatically stressed initial
configuration (Thomsen, 1972); when the initial configuration is stressed anisotropically, different tangent moduli may enter
the wave equation (Thurston, 1965).

2.3. Thermoelastic potentials and material constants

An unstrained reference state is defined by (E,0) = (0,0o), (D, 0) = (0,60), and temperature change from this reference
state is A9 = 6—6o. In what follows, Greek subscripts denote Voigt notation for symmetric indices, e.g., (-)y = () <> (), :

111, 222, 3363, 23=32o4, 13=31<5, 12=21<6. (2.62)

Following the standard convention (Brugger, 1964; Thurston, 1974; Clayton, 2011a), shear strain components contain a factor
of two, but stresses and stiffness coefficients do not. For example, Eg = 2E;,, Dg = 2D15, S¢ = S12, C4s5 = Cy313. First consider
free energy per unit reference volume, which can be expressed as in either of the following series expansions about energy
¥, from the reference state:

_ —0 j _— 10 — 1- 1-
¥(E.0)=¥0 + CouEa + 5, CousEaky + 37 Coup EabpEy + - ~oakaAO=5; PoupEabp A6~ iﬁ’OaEa(Ae)z_"' + 8(9), (2.63)

N N} 1 ~0 1 ~0 A 1. 1.
#(D,0)=¥0 + CouDa + 5, CoupDaDp + 3 Coup DuDpDy + -+ ~P0aDab0= 51 foayDaDpAO- 5 5 '0aDa(8OF =+ + 8(0).  (2.64)

Letting (-)lo =(-)lg=p =00 g, Material coefficients with zero subscripts are constants evaluated at the reference state,
which is assumed stress free:

¥o=P(0,0p), Co,= (7 /0E,)lo=0; (2.65)
—0 ird
> s CO[Z/}V = <—0EaaE/}()Ey ) 5 (266)
0 0

_ 2 _ ird
. Powp=— (7 ) . Ploa=— (2— ) ; (2.67)
)0 900E .| ) 06%0E,| )
o= #(0,00), Co,=(0F/aD,)lp=0; (2.68)
N FA'4 N P
=(=5->m R a 2.
Coap <0D(,0D/; ) 0, COaﬂy <0Da0D/30D7 ) 0, (2.69)

R 4 . >y . >y
ﬂm—‘(m)o, ﬂow—‘(m)oﬁ ﬁo"__<aaz—aa,>o' (2.70)

Letting co denote a constant specific heat for the unstrained material, thermal free energy is prescribed as

—0 P
Cous = <aEaaE,,

_ ¥
Poa== (aeaE(,

and

g =—Co0 In (0/69)=>Co = —00(3°g/96%)lo. 2.71)

Internal energy can be treated in a similar way, letting U, denote internal energy in the reference state defined by
(E,n)=(0,59), (D,n) =(0,15,), and entropy change from this reference state is Ay =#n—nq:

_ -, 1 1 _ 1_ 1_
U(E, ”) = UO + C(;aEfl + ?CgaﬁEaEﬁ + ?Cga/i}’EaEﬂEV + "'_00 rOaEu{An + jroaﬂEuEﬁAn + jr/OaEa(An)z + _h(”/) 5

2.72)
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~ Al 1~ 14 o 1. 1.,
UMD,n=Uo + CC])zzDa + jcgaﬂDaDﬁ + _CgaﬂyDaDﬂDr + =00 | I'0aDoAn + 5r0a/}DaD/}A'7 + fr/OaDa(A”)z + _h("l) .

3!
(2.73)
Material coefficients evaluated at the unstressed reference state are
Uo=U(0,70). Cp,=(3U/IEL)lo=0; (2.74)
— U — U
N o .
Cous = <6EQ6E/, >O, Cousy <6EQ6E[;6E7 >O, (2.75)
— _foom|\ _ [(o0]\ _ (U
goroa B <C6Ea ) o (()E,, ) - (aﬂaEa > ’
0 0 0
— *U _ »U
r =—| — INo,=—| ————— : 2.7
00! 0ap <6;16Ea0Eﬁ )O, 00l 0a (()nzaE,, ) 0, (2.76)
and
Uo=U(0,n9), Cg,=(9¥/oD,)|o=0; 2.77)
An 20 A ?U .
Cows = (m )O, Coupy = <m >O, (2.78)
. (eam|\ _ (ee|\ _ (U
G0l 00 = (é oD, > =T (aDa ) = (anaDa ) ’
0 0 0
R a0 . 30U
HOFO“”__<M>O’ Ool” Oa__<6;126D{, >O- (2.79)

Letting co denote a constant specific heat for the unstrained material, and noting when the material is unstrained that
oh/on=0/6,
0oh = cofo(e*"/©—1) = co(0h/90—00)=>Co = Bo[oh/(oh /n)]lo. (2.80)

Expanding the exponential as a Taylor series gives the isolated entropic contribution
1 1
h= A+ 5, (An)? /Co + 5, (An)° /G + -+ 2.81)

Material coefficients defined as derivatives of either free or internal energy with respect to E are related to those defined as
derivatives of either free or internal energy with respect to D in Appendix B.

3. Analytical solutions: homogeneous isothermal deformation of a cubic crystal
3.1. Cubic crystals

Analytical predictions of constitutive theories based on strain measures E and D are compared in what follows. In Section
3, attention is restricted to homogeneous, isothermal deformation of solids whose strain energy functions are truncated at
third order in strain, i.e., (2.63) and (2.64) degenerate to

P(E.00) =} CousEaEp + & Coup EaESE, = 3 CupEuEp + Cup ELESE, 3.1)

n ~ 0 ~ 0 ~
(D, 00) =} CosDuDy + § Cousy DuDysD, = 3 CopDuDy + 1€ u, DuDyD, 32)

where, without further consequence, datum energy ¥y =0 has been assigned. When homogeneous deformation F is
imposed, differences in predictions of the two theories arise due to differences in strain measures E(F) and D(F), which from
(A14) or (A.15) are second order in strain, as well as differences in third-order elastic constants indicated in (B.9). Second-
order elastic constants are equal, as shown in (B.3). Following the second equalities in each of (3.1) and (3.2), & superscripts
and 0 subscripts are dropped from the elastic constants, and C,s = Cous = COa,,.

Cubic crystals have at most three independent second-order elastic constants and can belong to point groups falling into
one of the two Laue groups; those belonging to the Laue group with higher symmetry have six independent third-order
constants (Thurston, 1974; Clayton, 2011a):

C11,C12,C44:  C111,C112,C123, C1a4, C155, Case. (3.3)
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The same components of C,s, and C,;, corresponding to C,, in (3.3) are functionally independent, but numerical values of
the same components of C,; and C,, can differ. The latter two are related by (B.9) or (B.10), yielding

Ci111=Cu11 +12C11, C112=Ci12 +4C12, Ci23=Crs,

C144=Craa +2C13, Cis5=Cis5 + Ci1 + Ci2 +4Cas, Cas = Cuss + 3Caa. (3.4
In the reference state, bulk modulus By, shear modulus Gy, and Poisson ratio v are defined as

Bo=34(Ci1 +2C12), Go=4C11-C12),

v=(3By—2Go)/(6By + 2Go) = 1C12/(C11 + C12). (3.5

Anisotropy ratio A is
A= ]—Go/C44 = 1—%(011 —C12)/C44; A= O©isotr0pic. (36)

Notice that of the constants (By, Go,v,A), only A depends on C44. Second-order elastic constants can be expressed in terms of
(Bop, v,A) as follows:
@_ 1-v %_ 3v %_ 3 1-2v
BO - ]—I—I/’ BO _1+l/, BO _2(]—A)1+l/

3.7

Requiring the quadratic (in strain) contribution to energy to be positive for all nonzero strains leads to the restrictions
Bo>0, -1<v<i A<l (3.8)

Combinations of second- and third-order constants are related to pressure derivatives of tangent bulk and shear moduli at
the reference state (Thurston, 1965; Guinan and Steinberg, 1974):

., dB dii (B;; +2B 1 1~ _ 2__

Bo=® 0=[3(“d7p]2)] 0=_T%(§C111 +2Ci12 +§0123), (3.9
. dG d[3 (B1;-B 1 _

GOZE 0:[2(+p12)] 0=—6—BO(C111—C123 +2Gyp)-1. (3.10)

Here B,; are components of incremental stiffness (2.59) in Voigt notation, when stress is hydrostatic (¢;; = —ps;;). These can
be converted to expressions in terms of C,4, using (3.4):

, 1 /14 A 2 4
BOZ—PTBO(gcm-FZan +§C123>+4, 311
, 1 - A
Gp=—=5-(C111-C123-11C41—Cq2)-1. (312
6By

In some problems analyzed subsequently, certain assumptions are used to further reduce the number of independent
elastic constants. For a cubic crystal of the higher symmetry Laue group also obeying Cauchy's relations (Clayton, 2011a)-
which in Lagrangian theory correspond to pairwise central force interactions among atoms and may omit thermal-kinetic
and zero-point vibrational contributions to stiffness-two independent second-order constants and three independent third-
order constants remain:

C44=C12; Ci55=Ci12, Cs56 =C144 =C123. (3.13)

From (3.7), the first of (3.13) is equivalent to A = 1—(1-2v)/(2v). Although (3.13) is incompatible with correspondences (3.4),
(3.9) and (3.11) can still be applied independently. For an isotropic solid not necessarily obeying Cauchy's relations, two
independent second-order constants and three third-order constants also remain:

Cas =1(C11-C12); Ciaa =3(C112—Ci23),
Cis5 =1 (C111—C112).  Case = &(C111—3C112 + 2C123). (3.14)

For a third-order elastic material simultaneously obeying Cauchy and isotropic symmetry restrictions, (3.13) and (3.14)
applied together, the response is parameterized by a single second-order constant (e.g., C1; or By):

C12=1C11©Gy/By =2 ov=1«Ci; =By; (3.15)
and a single third-order constant (e.g., C111 or ByBo):

Ci12=3Ci23 =1Ci11>

Bo=-%C111/Bo, Gy =—4C111/Bo-% (Lagrangian)

Bo=-2%Ci11/Bo+4, Gy=-%C111/Bo+2 (Eulerian) (3.16)
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Note that one of the three third-order relations in (3.14) becomes redundant when Cauchy conditions (3.13) are applied.
Here and in what follows? in Section 3, (3.9), (3.11), and (3.16) all apply, but (3.4) no longer necessarily holds since all
relations in the latter are not generally compatible with (3.16). Behavior analyzed in what follows in Section 3 can be
described by the following energy functions, normalized by bulk modulus By:

v 1-v 1 1-2v

2
38, ~ 201+ )(E +E35) 1, (EnEzz + ExEs3 + EszE) +— AT+ (E3, + E33 + E33)— 7OB EyExi Emn
x[8ybkrdmn + Sy (Skmdin + 51(N5LM) + Sk (SimON + Sindpm) + SMN(Sik L + SiLdjk) + ik (SmOLN + SNSLm)
+OL(SmMOKkN + SiNSkm) + SiL (MK + SNSkm) + S (SimSLN + SINSLM)], (3.17)
li’ 1 —U ] 2 v
375,022(1+ )(D1+D22+D33)+ A 12 + D33 + Di3)

—7—0 (By—4)DyDyiDun x [8ySkwdmn + Sy(Skmdin + Skndim) + Si(Gmdn + Sindim) + Smn Sy + Si.djc)
+O1k (SMOIN + SNSLm) + SjL(SimSkn + SinSkm) + SiL (MmN + SNSkm) + S (SimSIN + SiNdLm)]- (3.18)

In these expressions, normalized quadratic contributions to energy, (1/2By)CqsE.Es and (1/2Bg)C,sD,Dp, retain full cubic
anisotropy and depend on two dimensionless parameters » and A, while normalized cubic contributions to energy,
(1/6B0)C . E.E4E, and (1/6Bg)C s, D.DsD,, assume isotropic and Cauchy symmetries and depend only on dimensionless
parameter By in (3.17) and (3.18).

Values considered subsequently span a realistic range for crystalline solids: 0<B,<8, 45<v<% and -1<A<l Whenv =},
the value By =4 corresponds to G, = §, both of which are characteristic of pure polycrystalline substances (Guinan and
Steinberg, 1974; Steinberg, 1982). Third-order contributions drop out of Lagrangian and Eulerian energies when B, =0 and
By = 4, respectively. The Cauchy relations for third-order constants are reasonable for some real materials such as noble
metals (copper, silver, gold) wherein closed-shell repulsive interactions dominate anharmonic properties (Hiki and Granato,
1966). Therefore, the present model with property set (v,A, Bé):(}l,o,4) would be a realistic representation of an
untextured polycrystalline noble metal. Different, stronger Cauchy-type relations have been proposed elsewhere (Hiki and
Granato, 1966) for cubic solids wherein the nonlinearity is again characterized by a single third-order constant, but these
other relations are incompatible with isotropy unless all third-order constants vanish, so they could not be applied to
describe an untextured polycrystal and are not investigated further here.

3.2. Hydrostatic loading

For uniform spherical deformation from initial volume Vj to final volume V =JV,,

xi=J""8;X), o] = (0] /oFy)oxFy =JF;;' oxFy =0; (3.19)

1/3
F=]"*1= <v10) 1, E= %(]2/3-1)1, D= %(1-]-2/3)1. (3.20)

Axial components of strain tensors E and D for spherical deformation (3.20) and uniaxial strain (to be discussed in this
section) are shown in Fig. 1 from 20% expansion to 40% compression. Strain component Dy, tends to become more strongly
negative relative to E;; as J decreases.

In homogeneous cubic crystals or isotropic bodies, the stress state resulting from such deformation is hydrostatic:

oij=-p&j, Pu=-p* 6w, Sw=-pI"6x, Si=-p 5. (3.21)
Therefore, Cauchy pressure is, using (A.8) and (A.13),

1 153c 1, 1507 o] N Py s3(0¥ a] oY
=—= Skk=—5 — = = S =——. 3.22
p 31 KK 3] o] 9Exx . i 31 KK = ] "3 oDk i Pl ( )
Energy densities per unit reference volume in (3.17) and (3.18) reduce to
7 /Bo =5 (*°=1?[1-3B,(** 1)), (3.23)
¥ /Bo =§ (1) 27’ [1-4By-4(1-J ). (3.24)

These expressions are independent of anisotropy factor A and Poisson ratio v; they also hold for any cubic crystal, regardless
of any possible isotropic or Cauchy symmetries. From (3.22), Cauchy pressures resulting from third-order Lagrangian and

4 A perhaps more physically plausible, yet more mathematically cumbersome, approach would impose (3.13) only on Lagrangian constants and then
use (3.4) to obtain an alternative set of Eulerian constants.
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0.3
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& }
l_|_|v Lagrangian, spherical LY

-0.6 || Bulerian, spherical RN

' —- Lagrangian, uniaxial N
—————— Eulerian, uniaxial "\.
-0.9 ‘ :
12 141 10 09 08 07 06
VIV,

Fig. 1. Lagrangian (E;;) and Eulerian (Dy;) strain components under spherical and uniaxial deformation.

a b
0.25 : - — 2.0 S
Lagrangian, B', = 8 Iéi?er::gla; 204_ 4
0.20 Eulerian, B =4 1.5 Murnagh,an0 B,=4 /j
Lagrangian, By = 4 g - Lagrangian: B'D =0 ///
s 015 Euleran, 8, -4 : o 1.0 {———. EulrianB,=0 ra
oM — — —- Lagrangian, B\, =0 / M han. B = 0
o B Eulerian, By = 0 3 |00 Hmeghan S =
0.10 0.5 A
0.05 0.0 ~_
0.00 ; -0.5 ‘ ‘ '
1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6
VIV, VIV,

Fig. 2. Normalized (a) energy density and (b) hydrostatic pressure for spherical deformation.

Eulerian models are, respectively,

p/Bo=3(7"2~J"*[1-3By(**-1)], (Lagrangian) (3.25)

p/Bo=3(7"P—J)1 +3(By—4(~**~1)]. (Eulerian) (3.26)

These can be compared with the well known respective Birch-Murnaghan and Murnaghan equations of state (Birch, 1947;
Murnaghan, 1951, 1937; Thomsen, 1970):

p/Bo=3(""P—J)[1+3(By-4)(J*?-1)], (Birch-Murnaghan) (3.27)
p/Bo=(B-1)/By, limp/By=-In. (Murnaghan) (3.28)
B, -0

Since pressures in (3.26) and (3.27) coincide, the Birch-Murnaghan EOS is obtained directly from the present third-order
Eulerian elastic theory based on strain measure D when applied to a cubic crystal subjected to spherical deformation. Values
of normalized energy density ¥/By and ¥ /By are shown in Fig. 2(a) for several values of B, over compression range
0.6<J<1. Normalized pressures from (3.25) to (3.28) are shown in Fig. 2(b). As B, increases, energy and pressure increase
more rapidly with decreasing volume for Eulerian theory compared to Lagrangian theory. For physically characteristic value
By = 4, Eulerian theory provides much closer agreement with the Murnaghan EOS, giving a strongly increasing pressure at
large compression representative of real materials; for physically low value B, = 0, Lagrangian theory nearly coincides with
the Murnaghan EOS.
Now consider incremental modulus B of (2.59), which for cubic crystals under spherical deformation reduces to

B =J">Cradudydidi + P(5ida—8wdi—oudj) =J > Cudydiicdi + PSS + S + Sudj)- (3.29)

This tensor has the same symmetries as second-order elastic moduli C and €, and thus three independent components. For
Lagrangian theory with energy function (3.17), these are

1-v
1+v

i /Bo= 3" {75~ 1 Bl 1501 1= 8- | (330)
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Blz/Bo:3]1/3{%H_f_05’0(]2/3—1)+%(]*2/3—1){1—%Bb(12/3—1)}}, (3.31)
1-2v 1 3
__2q1/3 2/3 _ S (12/3_ _2 2/3 _
Bua/Bo =3 {5~ 10 B0 - 50 1= 8- (3.32)
For Eulerian theory with energy function (3.18), these are
1-v 9 _. 3 3 .
__2r-7/3 _ _ _1-2/3 21_72/3 e . -2/3 _
Bi1/Bo =37 {175 1 Bo- 1) + 5 1) |1+ 3 @p-ag > -1 . (333)
_3 ) Y3 B2y« 2314 3 B —ayg-
Bi2/Bo =37 {1 B 1)+ 5 1) 14 @y . (334)
1-2
Bas/Bo =37 st 10 oD P+ 51 143 B0 (335)

For homogeneous hydrostatic loading in which pressure is applied incrementally, (2.61) is an exact criterion for elastic
stability (Milstein and Hill, 1979), and there is no practical need to consider other criteria such as (2.60). Intrinsic stability
criterion (2.61) can here be reduced to the following three normalized conditions:

B _ B +2Bp G _ BBy

_G _ __H _Bu
Ag = By~ 38, >0, AG_GO_ 2Go >0, A”_C44_C44>0' (3.36)

For Lagrangian theory, left sides of these equalities become, explicitly,

AB_{l——Boum Dty L go- 50(12/3 ny's, (337)
o= { 1= 3y Bl 1= 15 =1 1= 3B 1) 11, (338)
= {120 G me-n- PO g2 [1- a1 (3:39)

Notice Ag depends only on (J,B,), whereas Ag depends on (J,v,By) and A, depends on (J,A, v, By). Also, A, —»Ag as A—0.
Analogously, for Eulerian theory,

to = {1-3 @-a11-72) + S (1-P7) [1 + 3 @21 177, (3.40)
_ [, 30+ —2/3 2/3) 123 B—ay1 23| 773
= {1 @) 4 A [1- e 17, 341)
_ [ 30-A0+y) o 0 -AA+0) o o [ 3 o 23 }} -7/3

n= {120 B 4 Co P ) 1= -yt 72, (3.42)

Table 1 shows stable domains for spherical/hydrostatic strain, defined as J for which (3.37)—(3.47) are positive. For the
range of properties analyzed, stability predictions of either theory are similar, with Lagrangian theory stable to slightly
larger compression (at By = 0) and Eulerian to slightly larger tension (at By = 8).

3.3. Uniaxial strain

For uniform uniaxial strain in the X; direction,

x1=JX1, X=X, x3=X3; JJ=0; (3.43)

Table 1
Stable domains for spherical deformation over property ranges 0<B’g<8, {;<v<% and -1<A<l

Theory Ag >0 Ag>0 A, >0
Lagrangian 000<J<1.13 0.81<J<1.06 090<J<1.03

o >p/Bg >-0.12 0.21>p/By > -0.06 0.11>p/By > -0.03
Eulerian 0.76<J<1.23 0.88<J<1.07 093<J<1.04

0.19>p/By > -0.08 0.12 > p/By > -0.07 0.07 > p/By > —0.04
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J oo 7' 0 0
F=[Fyl=[ox;/oX]]= [0 1 0|, F'=[F;'1=[X;/ox]=| 0 1 0]; (3.44)
0 0 1 0 01
1>~ 0 o -5 o0 o
E=[Ej]= 0 0 0|, D=[Dy]l= 0 0 0f. (3.45)
0 00 0 00

Specifically considered here is deformation along a (100) direction, wherein both referential and spatial Cartesian coordinate
axes are aligned parallel to cubic axes of the undeformed crystal lattice. Energies per unit volume in (3.17) and (3.18)
reduce to

wm _ Cil2 12 ,Ci1,2 33,2 12[1v 3.

P/Bo= ga (P17 + gt =1 = S0P17 175 - 5B (3.46)
5 _ Cqy 2.2 Cin 23 3 oof1-v 3 _, D

P /B = ot (1472 + ol (1727 = 2R [ - o) (347)

Notice that energy, and hence stresses and pressure, depend on material constants By, By, and v, but not anisotropy factor A
for uniaxial strain along (100). Normalized energy densities ¥ /By and ¥ /By are shown in Fig. 3(a) for several values of v
(with fixed B, = 4) over the compression range 0.6</<1, and similarly in Fig. 3(b) for several values of B, with fixed v = L As
v decreases, shear modulus Gy increases, and energy increases when J and B, are held fixed. As B, increases, energy
increases more rapidly with decreasing volume for Eulerian compared to Lagrangian theory as expected considering the
rapid increase in |Dq1| with decreasing volume in Fig. 1. When B, = 0, Eulerian theory predicts unrealistic negative energy
for ] <0.77.

First consider Lagrangian theory based on strain measure E. In Voigt notation, nonzero second Piola-Kirchhoff stress
components S, = 0¥ /oE, are

_ 1 1~ 3 1- 9

1= 30P=D[Cn +3Cm (-1 = 380011 - 801 (348)
= 1 1~ 3 9 _.

5= = 0P| Crz + 4 CraP-D)| = 3 BoP=1) |1, ~ 150 Bo0>- D). (3.49)

Cauchy stresses oj; :]’]FIMP,M =]’1F,-LF]-M§LM and pressure p = —%akk are, in Voigt notation,

e 3.5 1w 9, 5
7 =51 = 3B 15~ 5 Bl (350)
72 =03 =I5 =153 = 3Bl |1 40P )] (351)
1 1- 9 _. 9 _.
p=—5Bol*-D{I[7 75~ g5 Bl*-D| + U [~ et} (352)

The ratio R of pressure under uniaxial strain to that under spherical deformation at the same volume ratio J is found by
dividing (3.52) by (3.25):

a b
0.25 7 0.25 7
——— Lagrangian, v=0.1 Lagrangian, B', = ;
A +  Eulerian,v=01 | 5 5 5 ) e Eulerian, B'y :/
0.20 t Lagrangian, v= 0.25 0.20 Lagrangian, B, = /

- Eulerian, v=0.25 Eulerian, By =4 | /

- Lagrangian, v=0.4 agrangian, B'. = 7/ 7z
mo 015 f———— Eulerian, v=0.4 mo 0.15 r_—_—_- ;u?eriag’ B’;B:no 0 K //// ]
¥ o010} > 010} <

///
0.05 ] 0.05 -
=4 _ v=1/4
0.00 : : : 0.00
1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6
vIv, VIV,

Fig. 3. Normalized energy density under uniaxial compression for (a) variable » and (b) variable B’y.
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=PI BP0 + 27 |2 ~gead™- 1|}
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Now consider Eulerian theory based on strain measure D. In Voigt notation, nonzero stress components S, = 3% /oD, are

R=

(3.53)

- 1 1 4 3 1- 9 .
$1= 30 G + 3 G117 = SBo(1T) {7 — B0 7). (3.54)
5,25 = Lag|cn + 26 ima- Bo(1 9 B (12 3.55
2=83= (1) Cra g Crnal1T) | = 581 |2~ 140 Bo17)| (355)
Cauchy stresses oj; = ]‘1FLl FM]SLM and pressure p = —1¢y are, in Voigt notation,

— 1781 = 5B {5 - 5 Bo-1T), (356)
r2 =03 =18 =183 = 3Bl ) [~ g BaC1T ). (357)
_ 1 9 ’ -2 2 14
p== B0 {175~ 5 B 1)+ 2 | T — g Bo-1r) |} (3.58)

The ratio R of pressure under uniaxial strain to that under spherical deformation at the same volume ratio J is found by
dividing (3.58) by (3.26):

- ){

v

9 o -2 2 9w -2
51 + 2P |~ a@a- 1) |

307 1+ 8-

1+v

R= (3.59)

Normalized axial components of true (equivalently, Cauchy or first Piola-Kirchhoff) stress P = —P; = —o11, positive in
compression, are compared in Fig. 4(a) for several values of v at fixed By, =4 over 0.6</<1, and similarly in Fig. 4(b) for
variable By with v = 1 As v decreases, shear modulus Gy increases, and compressive stress increases when J and B, are held
fixed. As B, increases, P increases more rapidly with decreasing volume for Eulerian compared to Lagrangian theory,
providing a more physically realistic representation of real solid behavior for V/V(;<0.9 (Jeanloz, 1989). Pressure ratios of
(3.53) and (3.59) are compared for the same volume ranges and property sets in Fig. 5(a) and (b). For the most physically
representative case B, = 4, Lagrangian theory predicts R < 1 for J<0.9, and Eulerian predicts R > 1 for J < 1. In analysis of
shock physics data, material shear strength is often estimated as the difference between P in a uniaxial compression test and
p in hydrostatic compression (Graham and Brooks, 1971; Kondo and Ahrens, 1983). The present analysis shows that such a
procedure would underestimate strength for Lagrangian theory (for R < 1) and overestimate strength for Eulerian theory
R>1).

Under uniaxial strain deformation, stiffness coefficients A and B become too lengthy to write down individually in closed
form, but can easily be calculated using (2.50), (2.51) and (2.59). Intrinsic stability criteria (2.60) and (2.61) can be tested by
considering the following inequalities (Clayton, 2012) that are necessary conditions for stability under homogeneous strain:

det[A] > 044 = Anin([Agsl) /20 > 0;  det[B] > 0<Ag = Amin([Bys]) /A0 > 0. (3.60)

Here, Amin([-]) refers to the minimum eigenvalue of 6 x 6 matrix [-], and 4p = Amin([Css]) is the minimum eigenvalue of the
second-order elastic stiffness matrix in the undeformed material. When F =1, A4 = Ag = 1. Incremental stiffness B in (2.59)

a b
3.0 —7—7 3.0 . ;
— Lagra.ngian. v=0.1 i / Fi ————— Lagrangian,By=8 | / V= 1/4
Eulerian, v=0.1 $ S K 251 Eulerian, B, = 8 d !
25 Lagrangian, v= 0.25 - :/ 4 . Lagrangian, By =4 | _./
= Eulerian, v=0.25 S/ / . Eulerian,By=4 [ /
2.0 - Lagrangian, v=04 |/ ! 20+ - Lagrangian, B, = 0 Vi
_______ Eulerian, v= 0.4 L/ 4 Eulerian, B, =0 Fi
CDO 15 s /4/ mo 15 K
1.0+ ’ 1.0 ¢
05+ 05+
0.0 === ‘ : 0.0
1.0 0.9 0.8 0.7 0.6 1.0
VIV,

Fig. 4. Normalized axial true stress under uniaxial compression for (a) variable v and (b) variable B’y.
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Fig. 5. Ratio R of Cauchy pressure under uniaxial compression to Cauchy pressure under spherical compression for (a) variable v and (b) variable B’q.

Table 2
Stable domains for uniaxial strain over property ranges 0<B'o<8, {;<v<%, and —1<A<3.

Theory det[A] >0 det[B] >0
Lagrangian 081<J<1.02 090<J<1.02

0.18 > P/By > —0.02 0.10> P/By > —0.02
Eulerian 094<J<1.03 095<J<1.03

0.06 > P/B; > —0.03 0.05> P/Bg > —0.03

already has full Voigt symmetry and can be written immediately as a 6 x 6 matrix; the symmetrized form of A entering
(3.60) is formed from converting the following fourth-order tensor to Voigt notation (Clayton, 2012):
Akt = YAy Sidi + A Sy + AgiSidi + AjikSiySin)- (3.61)

Table 2 shows stable domains for uniaxial strain, defined as J for which either of (3.60) applies. For the range of properties
analyzed, stability predictions of either theory are similar, with Lagrangian theory stable to slightly larger compression and
Eulerian to slightly larger tension. First instability occurs for v= 2 and A= -1, properties corresponding to lowest shear
modulus Ca4. In compression, instability occurs for largest J at the minimum considered value of By =0; in tension,
instability occurs for smallest J at the maximum considered value of B, = 8.

3.4. Simple shear

For uniform simple shear of magnitude y in the X;-X, plane, let

X1 =X1+7X2, x2=Xz, x3=X3; okr=0; (3.62)
1 y O 1 -y O
F=[Fy]=|0 1 0|, F'=[F'1=[0 1 0; (3.63)
0 0 1 0 0 1
1 0 v O ; - v 0
0 0 O 0 0O

In this case, J=detF=1«V =V,, and nonzero strain components are E;=1y2 and Eg=2E;; =y or D;=-1y? and
Dg = 2D1, =y. Specifically considered here is shearing along a (100) direction on a {010} plane, wherein both referential and
spatial Cartesian coordinate axes are aligned parallel to cubic axes of the undeformed crystal lattice. Energy densities per
unit volume in (3.17) and (3.18) reduce to

¥ /By = L2 Tenile ) 2e La, 4l o3, 1=2 v 9g].2 35 4
¥/Bo= 55,7 {C“+<4C“+2C14“>7 3 =3 ZAAd v T |ad+o 70007 Tse00 o (369

By = L2 o o Voo le, alo32f 1-2 1= 9 g _al243 B a4yt
?’/BO—ZBOY {C44+<4C11 20155>V 2401117}—27/ A=A +o) 4(1+y)+70(B° D7+ 5580~y (-
(3.66)
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Fig. 6. Normalized energy density under simple shear for (a) variable A, (b) variable v and (c) variable B’q.

Normalized energy densities ¥ /By and ¥ /By are shown in Fig. 6(a) for several values of A (with fixed B, =4 and v = b, in
Fig. 6(b) for several values of v (with fixed By =4 and A=0), and in Fig. 6(c) for several values of B, (with fixed v = ] and
A=0), over the shear strain range 0<y<0.8. As shown in Fig. 6(a) and (b), when By =4, as y becomes large, energy may
decrease and even become unrealistically negative for Lagrangian theory. As shown in Fig. 6(c), under simple shear, ¥ with
B, = 0 is equal to ¥ with B, =4, and ¥ with By, =4 is equal to ¥ with B, =0, as can be verified by inspection of (3.65) and
(3.66). For y20.45, ¥ can become unrealistically negative (indicating unstable behavior) in Lagrangian theory for By>4 and
in Eulerian theory for By = 0.

First consider Lagrangian theory based on strain measure E. In Voigt notation, nonzero second Piola-Kirchhoff stress
components S, = 0¥ /JE, are

Si1= %(012 +Ciss)r + %6112}’4 = %Bo}’z (ﬁ—%Bb—%B&’Z)’ (3.67)
Sy = %(Cn +Ciss)r + %611174 = %BO}’Z (11—:;—%36—%5672>’ (3.68)
S3= %(012 +Cra)? + %6112?’4 = %Boi’z (ﬁ—%%—%%?z)’ (3.69)
Se= <C44 + %61557/2>7 = %Bo}' {%—% 5672} (3.70)

Cauchy stresses, including shear stress r and pressure p, are

01 =51 47753 + 255 = > Boy? [—2“_2”)+(]_A)” 9 B, +y2< v 17, 9 Bbﬁ)}, 3.71)

2 a-Ad+v 35 ° 1+, 140 ° 28
02=52= 2 Bor? (f—fy—%sb—%%yz), (3.72)
o3=S3= %BOVZ (ﬁ—% Bb—% 56Y2>= (3.73)
r=06=S¢+75, = %Boy {(1—;)_5: 5+ 7 (11; —% Bb—%Bbyzﬂ , (3.74)
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1, 5120=20)+(1-A)1 +v) 21 1-v 171 9
p==5Bor [ A-A)1 +v) ~3580 7’ T, 14050~ 28807’ 3.75)
When A=0, a universal relation (Eringen, 1962) for isotropic hyperelasticity can be verified:
3, 5[1-2v 1-v 18 9

01—02—580}/ []+u+ <1+y 3580 2880)/ )] =1y. (3.76)
Now consider Eulerian theory based on strain measure D. In Voigt notation, nonzero stress components S, = 3% /oD, are

. 1 A 2 a4 35 H5f1-v 9 9 . 5

= j(—Cn + Ciss)y +§C111Y =—5Bor T +%(Bo—4) +ﬁ(30—4)}’ , 3.77)

2 1 A 1 3 [ v 9 _. 9 _.

S, = j(_Cu + Ciss)r® + §0112Y4 =-3 Bor? T+ + E(Bo—‘l) + m(Bo—‘l)yz}a (3.78)

e 1 A 2 a4 35 o[ w 3

S3= j(—Clz + Ciaa)y +§C112Y = _EBW T + ﬁ(Bo—‘l) + = 140 (By—4)r? (3.79)

12 } (3.80)

. 14 3
56_<C44—§C1557 )y 5 OV{W 35( o—4)y

Cauchy stresses, including shear stress and pressure, are Cauchy stresses, including shear stress r and pressure p, are

7 =51 == 3 Bur? [ 1 + 35 B + 55 Bo-47 (3:81)
52252+ 7%51-2485 =~ 2 B [W s B+ 4 By 4)(}}1(7) o 2)} (382)
63=53= —%Bgyz {1 iy + %(55_4) +%(Bb—4)y2}, (3.83)
7 =06 =55=151 % {(1_/14)(1 »ti T (BO o+ 7(80 4 } G54
p= 3807 [P ) S B+ 7 (1 + 120 Bo- + 5 Bodn?) . (385)

When A=0, a universal relation (Eringen, 1962) for isotropic hyperelasticity can be verified:

34 H[1-2v  1—v 2,
0102 = 5 Bor [1+U+1+U

18 _. 9 _
+ 35 B0 + o5 @ = (386)

For both Lagrangian and Eulerian theories, 7 is O(y) and normal stresses are O(y2).

Normalized shear stress z/By for Lagrangian and Eulerian theories [(3.74) and (3.84)] are shown in Fig. 7(a) for several
values of A (with fixed By =4 and v = 1), in Fig. 7(b) for several values of v (with fixed B, =4 and A=0), and in Fig. 7(c) for
several values of B, (with fixed v = } and A=0), over the shear strain range 0<y<0.8. As shown in Fig. 7(a) and (b), when
By =4, as y becomes large, shear stress may decrease and even become unrealistically negative for Lagrangian theory. As
shown in Fig. 6(c), under simple shear, r of Lagrangian theory with B, = 0 is equal to ¢ of Eulerian theory with B, =4, and =
of Lagrangian theory with By =4 is equal to ¢ of Eulerian theory with By =0.

Under shear deformation, stiffness coefficients A and B can be calculated using (2.50), (2.51), and (2.59). Intrinsic stability
criteria (2.60) and (2.61) can then be tested by considering the necessary conditions

det[A] > 044 = min([Aqp])/20 > 0;  det [B] > 04 = Amin((Basl)/20 > 0; (3.87)

where Amin([-]) is the minimum eigenvalue of 6 x 6 matrix [-], and Ag = Amin([Cyp]). The symmetric form of A in (3.87) is
computed with (3.61). Because (2.60) and (2.61), when used with fully symmetric 6 x 6 matrices [A,s] and [B,s], do not
strictly apply when the deformation gradient involves rotation (i.e., when F£F"), in applying (3.87) the substitution F— U is
applied, where U is the right stretch tensor from the polar decomposition of the simple shear deformation in (3.63) (Clayton
and Bliss, submitted for publication):

2 Y 2 /4
1 y 0 @2 @) 0 @D @)
0 1 0| =[RkllUyl=|-—2, —2__ v 24 . 3.88
[Rik][Uk] @ @y’ 0 T GoghT 0 (3.88)
001 0 0o 1 0 0o 1

With this substitution, strain energies and stresses referred to referential coordinates are unchanged, but Cauchy stress
components may differ from those presented analytically above in the absence of rotation. Table 3 shows stable domains for
shear strain, defined as y for which either of (3.87) applies. First instability occurs for v=2 and A= -1, properties
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Fig. 7. Normalized shear stress for (a) variable A, (b) variable v and (c) variable B’y.

Table 3
Stable domains for uniaxial strain over property ranges 0<B'o<8, 5 <v<%, and —1<A<l.

Theory det[A] >0 det[B]>0
Lagrangian y<0.05 y<0.05

7/By <4.8 x 1073 /By <4.8 x 1073
Eulerian y<0.09 y<0.09

/By <7.8 x 107 /By <7.8 x 1073

corresponding to lowest shear modulus C44. Eulerian theory is intrinsically stable to y~0.09 with either criteria, compared to
the significantly smaller stable domain of Lagrangian theory (y<0.05).

3.5. Summary of analytical results and discussion

Key aspects of results in Sections 3.2-3.4 are summarized as follows. For hydrostatic compression, for a physically
characteristic value By~4, Eulerian theory appears more realistic than Lagrangian theory, giving a pressure response closer
to the Murnaghan EOS, while Lagrangian theory fails to predict a rapidly increasing pressure at very large compression.
Similar observations have been made elsewhere (Birch, 1947, 1978; Jeanloz, 1989). For uniaxial compression, with By~4,
Eulerian theory again offers a more physically realistic representation; however, when B, = 0, Eulerian theory can produce
negative strain energy at large compression. For simple shear, Eulerian theory is generally more stable and provides
physically reasonable behavior (e.g., monotonically increasing energy with increasing shear strain) for B’>4, while
Lagrangian theory predicts decreasing shear stress and strain energy at large shear for B'>4. The above statements apply
for an ideal cubic crystal with highly symmetric anharmonic properties. Deviations may be expected for highly anisotropic
materials, as shown in Section 4.

This work is focused primarily on comparison of only two theories based on two strain measures E and D. Lagrangian
E—based theory is considered because, historically, it is the most common measure used for anisotropic crystal hyperelasticity.
Eulerian D—based theory is considered because, as shown already, it reduces to the successful Birch—-Murnaghan EOS under
hydrostatic compression, and because it has been demonstrated elsewhere to accurately predict the response of anisotropic
crystals under pressure (Weaver, 1976; Perrin and Delannoy, 1978). The present work investigates, for the first time, potential
accuracy of D—based theory for loading conditions involving deviatoric stress in addition to pressure.
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An infinite number of possible strain measures exists for anisotropic hyperelasticity, e.g., constructions consisting of
stretch U raised to various exponents are possible. A likely useful strain energy potential, not considered in this work, would
depend on the logarithm of the right stretch, i.e., W = W(In U). This logarithmic strain is of particular interest since its
spatial counterpart, Hencky strain In V, is useful for many isotropic solids under moderate to large deformation (Anand,
1979). For isotropic solids, the simple constitutive equality ¢ =] !0W/aIn V holds, though V is not an appropriate state
variable for anisotropic solids. In contrast, W = W(In U) is appropriate for anisotropic hyperelasticity, and though not often
encountered in the literature, was considered in Dluzewski (2000). In that work Dluzewski (2000), transformation formulae
among third-order elastic constants for Green elasticity and logarithmic elasticity were derived, and it was shown that the
latter tend to be smaller in magnitude for several cubic crystals, suggesting greater accuracy of polynomial energy functions
depending on In U than E when truncated at a certain order. Whether or not In U-based theory is more accurate than
D—based theory remains an open question that may be answered in future work; superiority of one measure over another
likely will depend on particular material and loading regime. Since both In U and D increase rapidly in magnitude with
increasing compression, a polynomial series for strain energy in either strain measure should account well for the rapid
increase in energy, pressure, and stiffness observed in most solids at large compression. Computation of In U, for example
via usual algorithms requiring matrix diagonalization, is generally more cumbersome than D, which requires only inversion
of F. Computation of derivatives such as oln U/oF needed for stress, tangent stiffness, and various thermodynamic
identities, is possible but generally tedious (Jog, 2009).

4. Shock compression of low-symmetry crystals

Considered in what follows next is the material response under loading by an ideal planar shock wave. Crystals with
homogeneous properties but of arbitrary anisotropy are addressed, i.e., simplifying assumptions made in Section 3.1 on
material symmetry are removed. Generic analytical solutions using nonlinear elastic theories based on strain measures E
(Lagrangian) and D (Eulerian) are derived in Section 4.1. Specific materials-quartz, sapphire, and diamond-towards which
the theories are applied, and requisite thermoelastic properties are presented in Section 4.2. Results of the model as applied
to these materials are discussed in Section 4.3, with additional new developments in Section 4.4.

4.1. General 1-D solutions

A shock wave is represented mathematically as a propagating surface across which there may exist jump discontinuities
in mass density, particle velocity, strain, stress, entropy, temperature, and internal energy. Considered here are 1-D (i.e,
normal or longitudinal) shocks. Quantities associated with material ahead of the shock are labeled with superscript +, with
material behind superscript —. Material ahead of the shock is assumed to be at rest, undeformed, unstressed, and at ambient
reference temperature dy. The jump in an arbitrary quantity (-) across the shock is written as

[(D]=6-O" 4.1

In derivations that follow, the shock moves at steady natural velocity © in the X = X; direction. The deformation gradient is
uniaxial strain of the form

F oo 146 0 0
Fiz[F,'J]_Z 01 0= 0 1 0]; Ft=1. 4.2)
0 0 1 0 01

Behind the shock, with x =x7 and u=u; the longitudinal particle coordinate and displacement,

F:%:1+a_u:1+§:]‘:£:f)—?, E=ou/oX. (43)

In the present work attention is restricted to compressive shocks, for which 0 < F<1 and -1 < £¢<0, moving with positive
velocity ® > 0. The only nonzero components of Lagrangian and Eulerian strain are, respectively,

E=E = %<F2—1>:¢<1 +%¢), D=Dj = y(1-F?)= {1— ! (4.4)

2 a+e?]

Longitudinal force per unit reference area (or equivalently, current area under uniaxial strain) behind the shock is, positive
in compression,

P= Py, =—J(Fio)” =—o7;. (4.5)

Though often referred to as “Hugoniot pressure”, stress P is generally not equal to hydrostatic pressure p=—1oy in a solid
with shear strength.

Let p=p~ and v =] denote mass density and particle velocity in the shocked state. Conservation laws for mass, linear
momentum, and energy-often referred to as Rankine-Hugoniot equations- can be written, respectively, as (Thurston, 1974;
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McQueen et al., 1970)

00D = p(D-v)eé = —v/D, (4.6)
P = pyDu=pgD? = —P/Ecpyv? = —PE, 4.7
Pv= D(%povz +[UD=[U] :%pouz. (4.8)

From (4.6), requiring 1>J > 0 leads to constraints © > »>0. In energy balance (4.8), the usual adiabatic assumption of null
heat conduction has been used, which is thought appropriate for elastic materials (Thurston, 1974) as well as relatively weak
shocks in elastic-plastic solids (Perrin and Delannoy-Coutris, 1983), but may not be valid for overdriven shocks in elastic—
plastic materials (Wallace, 1981). The shock process is neither isothermal nor isentropic; the entropy inequality can be
written as (Germain and Lee, 1973)

[n/po 120=[n]>0. 4.9

Subsequent derivations rely on internal energy-based constitutive models U(E,) and U(D,s) of (2.72) and (2.73).
Derivatives of these functions with respect to strain depend only on entropy changes Ay from the reference state and hence
are independent of 5, = . Furthermore, stress and temperature depend only on derivatives of internal energy with respect
to strain and entropy, and hence are independent of Uy. Therefore, to simplify forthcoming derivations, let

Up=U"=0, no=y"=0=>[U]=U=U, [n]l=n=2ap=n; (4.10)
6" =@U /ot =6y, 6 =0U/op)” =0=>[0] =07 —0" = 0-0y = A6. 4.11)
Stress components thermodynamically conjugate to E or D are related to P via

P=—F;Sy=-FS=-(1+¢&S, S=511=0U/dE1; =aU/0E; 4.12)

P=—J"Fi'F/Sy=-F3S=-(1+97S, S=51;=00/0D1; =0U/aD; (4.13)

where all quantities are evaluated in the material behind the shock.
The following binomial series (Spiegel and Liu, 1999) proves useful, where a is a non-negative constant:

nn-1) n(n-1)(n-2)

(a+f)"=a"+na"f + 5 s 3 a3f?
N n(n—l)(ileZ)(n—3) aAf n(n—l)(n—?‘(n—3)(n—4) a5f5 4 . (4.14)
Let a=1. From (4.4), selecting roots corresponding to é=0 at E=D =0,
E=-1+1+2EY2=-1+1-2D)""2 (4.15)

From (4.14), with n= 1 and f = 2E, the displacement gradient in the shocked state is

E=E1E* +1E*-3F* + IF°—... (4.16)
Similarly, letting n=—1 and f =-2D,

E=D+3D*+3D° +33D* +8D° + ... 4.17)
Finally, letting n= 2 and f = -2D,

1+932=01-2D*?=1-3D+3D* +1D* +3D* +3D° + ... (4.18)

The above series are valid for —1 < f<1, which correspond to 0.75V/V<1.7. Using (4.7), (4.10), (4.12), and (4.16), the second
of (4.8) becomes, in terms of E,

U=-1Pe=1S61 + &) =1SE+IFP-1E + 3E*-IE° + -). (4.19)
Using (4.7), (4.10), (4.13), (4.17), and (4.18), the second of (4.8) becomes, alternatively in terms of D,
U=-1Pe=1S61+ 973 =1S(D-3D*-1D*-3 D*3D° ). (4.20)

Internal energy functions (2.72) and (2.73)-using (2.81) and specialized to the present uniaxial strain conditions with
(2.74), (2.77), and (4.10), and extended to fourth order in strain and second order in entropy-are

— 1 1~ 1~ 1 1 1
UE,n) = ianz +€C“]E3 +ﬂ0111154—90 <F1Eﬂ+§r'15ﬂ2 +§F1152'7) -‘1-9071<1 +H">’ (4.21)

. 1 14 1 - 1 1. 1
UD,n = §C11D2 +EC111D3 +ﬂC1111D4—'90 (Fan+§F’1D;12 +jF11D2’7> +'90'7<1 +2TO'7>- (4.22)
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Elastic constants in (4.21) and (4.22) are isentropic, and Voigt notation is used. The following simplified notation has been
used for material constants referred to the reference state, upon consideration of (B.3) and (B.2),

Ciu=Cg=Coi» M=Toi=Fo, IM=To=I"o. (4.23)
Third- and fourth-order isentropic elastic constants with respect to strain measures E and D are written as

= = = = A All A All

C111 =Cg1]1a Cnn :ann; Cln =Co111> C1111 = Co1111~ (4-24)

From (B.(5), B.10), and a similar derivation applied to fourth-order elastic constants, higher-order longitudinal constants are
related by

Iy =Ty +4r1, Ci11=Cii1 +12Cq1,  Cq111 =Cr111-18C111-318Cy;. (4.25)
Longitudinal stress and temperature in the shocked state are, for Lagrangian theory,

S=0U/0E =CyE +3CinE? + § Crinn B> ~0on(I'y + T1iE + 3 1n), (4.26)

0=0U/on=0o(1 + n/co—IE-T"1En—3T11E?); (4.27)
and for Eulerian theory

S=0U0/oD=CD+ i CinD? +%61111D3—9011(F1 + 1D+ 1rm), (4.28)

0=0U /on = 6o(1 + n/co—D-T"1Dy=3F 11D?). (4.29)

Consider Lagrangian theory. Substitution of (4.26) into (4.19), with U =T, gives
U =-1{0on(Iy + 11 1n))E + 1 {C11—0ons (I + 3 I'1m) + T E® + 1 {Ci1 + Cunt + Oonl(Fy + 30 m-T 1) E?
434 {(=6C11 +3C111 + 2C 11116002 (I'1 + 37 1m)—6T 11} E*
+45 (15C11-6C111 + 2C 1111 + Oon21(I"y + 37 1) =15T 11 }E° + -+, (4.30)
Egs. (4.21) and (4.30) can be treated as two equations in two unknowns U and 7, and can, in principle, yield a solution for
entropy jump [n] =%~ =y in terms of strain, i.e., # = 5(E). For the strain energy function U in (4.21) that is quadratic in
entropy, such a solution for  can most readily be obtained using numerical methods when ¢ = (V-Vq)/V, is prescribed.
With # so obtained, longitudinal stresses S and P can then be acquired immediately using (4.26) and (4.12), noting that
F=1+4+¢&=(1+2E)"2
When U is a linear function of entropy, then a solution for »(E) can be obtained analytically in closed form (Thurston,
1974). In this simplified case, most valid for (cg'-7"1E)y<2, (4.21) and (4.30) reduce to

U=1CHE* +LCi1iE® + 4 CrinE* =0 E + T 11 E®)n + 6oy (4.31)
and
U =3 {0oT1mE + 3 {Cr1~0onl} It + T1E> + }{C11 + Cu11 + Oonll1-T11}E?
+34 {(=6C11 + 3C111 + 2C 1111000 1 —6T 11 }E* + 5{15C11—6C111 + 2C1111 + 0on[2171=15T 11 }E° + . (4.32)
Writing »(E) as a polynomial with constant coefficients ag,ay,as, ...,
n=0ao + a1E + a:E* + a3E> + a4E* + asE> + ---. (4.33)

Substituting (4.33) into (4.31) and (4.32), equating coefficients of like powers of E up to order 5, and noting that 79 =#(0) =0
from convention (4.10),

Go=a1=0a=0, a3=-:505"(3C11+Cin1), (4.34)
a4 =2405'[-6C11 + 3C111 + Ci111 + 11(3C1 + Cinn)), (4.35)
as = 405" [15C11-6C111 + 2C1111 + I'1(=9C11 + 2C111 + Ci111) + I'13Ch1 + Cha)l- (4.36)

Substitution of entropy jump n(E)=[#n], now known to fifth order in strain, into (4.26), (4.27), (4.12), and Hugoniot
equations (4.6)-(4.8) then gives the longitudinal stresses, internal energy jump, particle velocity, shock velocity, and
temperature completely in terms of E:

S=CnE+1Ci11E* + (Cri11—-60l1a3)E> —0o(I'1 a4 + T1103)E* ~60(I'1a5 + T1104)E>, (4.37)
P=—(1+2E)?S, [U]=1S[1+ 2E)—(1 + 2E)'/?], (4.38)

0={(S/po)(1 + 2E)—(1 + 2B/}, (439
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D= {5 /p)l(1 + 2E)—(1 + 2E)12*[1=(1 + 2BV, (4.40)

0= 0o(1-IE-1T11E%). (4.41)
Now consider Eulerian theory. Substitution of (4.28) into (4.20), with U = U, gives
U =100t + 17" 1m))D + 1 (Ci1 + 0on3 (1 + 1 T'ip)—T113D% + 1 (=3C11 + Cuu1 + Oonl(Ty + 3" 1m) + 3F11])D?

424 (=6C11-9C 111 + 2C 1111 + 0oy (I + 3 1) + 6 11D* + & (=9C11-6C111-6C 1111 + O[Ot + 1" 1) + OF 11 }D° + ---.
(4.42)

Eqs. (4.22) and (4.42) are two equations in two unknowns U and 5, and can yield a solution for entropy jump # = 7(D). For U in
(4.22) that is quadratic in entropy, such a solution can most readily be obtained using numerical methods when ¢ is prescribed.
Longitudinal stresses $ and P can then be acquired immediately using (4.22) and (4.42), noting that F=1 + &= (1-2D) /2.

When U is a linear function of entropy, then a solution for (D) can be obtained analytically in closed form. In this
simplified case, most valid for (c;'-7"1D)y<2, (4.22) and (4.42) reduce to

U=1C11D* +1C111D* + 34 C1111D*~00(I'1 D + 3" 11D*)n + Gon (4.43)
and
U =~3{0onI'1}D + % {C11 + Oonl3 I'1~I111}D* + {=3C11 + Cr1 + oI’y + 3711)}D°
454 {=6C11=9C 111 + 2C 1111 + Oonl3 1 + 61 111D* + (~9C11-6C111-6C 1111 + 0[O + 9 111}D° + . (4.44)
Writing #(D) as a polynomial with constant coefficients bg, by, b, ...,
7 =bo + b1D + byD? + b3D® + byD* + bsD® + ---. (4.45)

Substituting (4.45) into (4.43) and (4.44), equating coefficients of like powers of D up to order 5, and noting that 5, =5(0) =0
from convention (4.10),

bo=by=by =0, bs=:50;"(=9C11 + Ci11), (4.46)
by =465'[-6C11-9C 111 + C1111 + I'1(=9C11 + C111)], (4.47)
bs = 05" [-9C11-6C111-6C 1111 + '1(=33C11=6C111 + C1111) + I'3(=9C11 + C111)]. (4.48)

Notice that as; = bs. Substitution of entropy jump »(D) = [ ], now known to fifth order in strain, into (4.28), (4.29), (4.13),
and Hugoniot equations (4.6)-(4.8) then gives the longitudinal stresses, internal energy jump, particle velocity, shock
velocity, and temperature completely in terms of D:

S=CuD+1C111D* + (Cr111-60'1b3)D>~0o(I"1ba + [11b3)D*~0o(I"1bs + [11b4)D°, (4.49)
P=—(1-2D)*%S, [U] =18[(1-2D)-(1-2D)*/?], (4.50)
v ={/po)l(1-2D)-(1-2D)* "%, (4.51)
D = (8/po)l(1-2D)~(1-2D)*2)) *[1-(1-2D) V2, (4.52)
0= 0o(1-I'\ D3I 11D?). (4.53)

From (4.37) and (4.49), contributions to stresses S and § from entropy production are O(E*) and O(D?), respectively. The
foregoing analytical solution for the elastic shock response in Lagrangian theory was derived by Thurston (1974); the
analogous full and detailed derivation for Eulerian theory has not appeared elsewhere, to the author's knowledge.

In order to apply the above solutions to particular materials, the following six independent constants are needed at the
unstressed ambient state at temperature 6y: isentropic elastic constants Cq1, C111, C1111; Griineisen parameters I'y,T'11; and
mass density p,. Higher-order constants in the Eulerian theory (Cm,élm,f]]) can be obtained from those of Lagrangian
theory via (4.25), or vice versa, or each set can be fit independently to material data.

In the application that follows in Section 4.2 in which Lagrangian and Eulerian elasticity theories are compared, greatest
emphasis is placed on evaluation of the mechanical, rather than thermal, response, consistent with internal energy
functions (4.31) and (4.43) quartic in strain but linear in entropy. Note from (2.37) that thermal expansion coefficients in the
reference state are equivalent in Lagrangian and Eulerian theories:

do]] =aoy =aqy Aoy = Apy = Ag. (4.54)
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Perhaps most often measured is specific heat at constant stress/pressure cj = ¢>(0, 6p), which can be used in (2.43) to obtain
co=¢(0,0p):

Co = p—002a@3Clypr  Chuy = Cap—(60/C0)PouBog- (4.55)

where second-order isothermal elastic constants are obtained from isentropic constants C,; via (2.46). Griineisen
parameters can be calculated from second-order elastic constants, specific heat, and thermal expansion coefficients
(Thurston, 1974; Clayton, 2011a):

o= Pou/Co= Cga/;fl/f/co = Ca/ia/i/q?)- (4.56)

Experimental measurements of higher-order Griineisen parameters are scarce. A typical assumption (Wallace, 1980) for
weak shocks in crystals is pI'y~poloy, which yields

]_] f]] = constant:;»af,]/aEKL = —]TU(a]_] /aEKL) = FI_K] F;_l f}]
=Ty =3 0Ty /Exe + T k/OEy)lo~HToydke + Tok0y)- (4.57)
For constant specific heat, positive T, correlates decreasing second-order elastic coefficients with increasing temperature.
For a cubic crystal with scalar Griineisen parameter I' = 1Tk, this assumption corresponds to (dIn7T/d1lnV)g=1.

Isentropic third-order constants C,,/,, can be computed at the reference state from mixed third-order constants C”
measured in ultrasonic experiments using the relation (Brugger, 1964)

apy

Cupy = C .+ 60T,[C., /,(,a,; —(9C/00)I0]. (4.58)

The difference between isentropic and mixed coefficients is often smaller than uncertainty in experimental measurements
of either. In summary, the five parameters Cq1,C111,C1111,71, 11 can be calculated for a material of arbitrary symmetry
using the above relations given Cy4 and a4 (where p=1,2,...6), cf), aCH/()H Cm, and C,11. Experimental values exist for a
number of crystals for all parameters except Cq;11; reported measurements of the latter are scarce.

4.2. Materials

The theory and analytical solutions derived in Section 4.1 are applied to analyze shock compression behavior of single
crystals of three hard minerals: quartz («a—SiO;), sapphire (a—Al,03 or corundum), and diamond (C). These materials are
considered because their ratios of Hugoniot Elastic Limit (HEL) to longitudinal elastic moduli are relatively large, meaning
that elastic deformations in excess of several percent volumetric compression can be achieved in uniaxial compression prior
to activation of any inelastic deformation mechanisms that could render the analysis of Section 4.1 physically unrealistic. In
contrast, the nonlinear elastic analysis of Section 4.1 could be applied to more ductile materials with a lower HEL-e.g.,
metals that undergo plastic slip or deformation twinning-but would be physically realistic only at smaller compressions
where effects of higher-order moduli may be less evident. Above the HEL, closed-form analytical solutions for anisotropic
solids become intractable because neither elastic nor plastic deformation are one-dimensional, and entropy production from
inelasticity can be substantial. Quartz, sapphire, and diamond also belong to the limited set of anisotropic crystals whose
third- and fourth-order elastic constants have been reported.

Specifically, analytical solutions are compared for anisotropic nonlinear elastic uniaxial shock compression involving
internal energy functions (4.31) and (4.43) (Lagrangian and Eulerian theories, respectively) incorporating elastic constants
up to fourth order. Quartz and sapphire have trigonal (i.e., rhombohedral) symmetry. Quartz is analyzed for compression
along the a-axis (X-cut, [1210]), b-axis (Y-cut, [1010]) and c-axis (Z-cut, [0001]); sapphire is analyzed for compression along
the a-axis (X-cut) and c-axis (Z-cut). Diamond is cubic and is analyzed for compression along a cube axis (X-cut, [100]).
Elastic constants are interchanged as needed for consistency with notation of Section 4.1. For example, for c-axis (i.e., Z-cut)
uniaxial shock compression, the analysis of Section 4.1 remains valid with Cy; replaced by Cs3, C111 by C3s3, I'; by I's, etc.

Requisite material properties are listed in Table 4 corresponding to an ambient temperature of 295 K. Isentropic second-
order elastic constants for all three materials are obtained from experiment (McSkimin et al., 1965, 1972; Hankey and
Schuele, 1970), mixed third-order constants are obtained for quartz and sapphire from experiment (Thurston et al., 1966;
Hankey and Schuele, 1970) and then converted to isentropic constants using (4.58). Fourth-order Lagrangian constants
shown for quartz and sapphire are reported from fits to shock compression experiments (Fowles, 1967; Graham, 1972a) and
are inherently adiabatic. Quartz is piezoelectric; constants listed correspond to open-circuit conditions (i.e., constant electric
displacement). For diamond, third- and fourth-order constants are obtained verbatim from quantum mechanical
calculations (Nielsen, 1986); no attempt is made to adjust these for finite temperature. Griineisen parameters are calculated
via (4.56) and (4.57) using experimentally determined specific heats at constant pressure (McSkimin et al., 1965; Furukawa
et al., 1956; DeSorbo, 1953), linear thermal expansion coefficients (McSkimin et al., 1965; Burghartz and Schulz, 1994; Slack
and Bartram, 1975), and isentropic second-order elastic constants. For quartz and sapphire, third-order Eulerian coefficients
€111 are obtained using conversion (4.25). As discussed later in Section 4.3, fourth-order Eulerian constants 1117 for quartz
and sapphire are fit to shock velocity versus particle velocity data (Fowles, 1967; Graham and Brooks, 1971) keeping third-
order elastic constants fixed, following the same procedure used for Cy;;1.Fitting this constant independently rather than
using the last of (4.25) provides for the most fair comparison of fourth-order Lagrangian and Eulerian theories. For diamond,
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Table 4
Physical properties of single crystals (6o =295 K; pg in g/cm?; C,__ in GPa).

Property Quartz (X) Quartz (Y) Quartz (Z) Sapphire (X) Sapphire (Z) Diamond (X)
Ci 87.6 87.6 106 497 498 1079
Cin =211 -333 -814 -3870 —-3340 -6300
Ein 840 718 455 2090 2640 5570
Cun 15930 15930 18490 50 000 50 000 43 600
G 15000 10500 6500 10 000 20 000 16 300
r=rn 0.74 0.74 0.58 1.29 129 0.81
' 3.70 3.70 2.90 6.43 6.46 4.04
Prer/Cia 0.10 0.10 0.15 0.05 0.05 0.08
Po 2.65 3.98 3.51
B'o 6.3 4.2 4.0
a b
112 : :
4th order Lagrangian X 1.25
1.0 H oo 4th order Eulerian X - 4 —— 4th order Lagrangian
= v Experiment X a1 iaAanl | 4th order Eulerian
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[m] Experiment Y 1 15
O 1.06 | S
S qoat S 410
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: : : 1.00
0.02 0.04 0.06 0.08 0.10 0.02 0.04 006 0.08 0.10 0.12 0.14
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Fig. 8. Predicted and experimental (Fowles, 1967) shock velocity versus particle velocity for quartz, normalized by linear elastic wave speed Cy: (a) X- and
Y-cut and (b) Z-cut.

Eulerian higher-order constants C11; and Cq11; are again taken verbatim from Nielsen (1986), where they have been
obtained by fitting numerical data directly rather than using (4.25). For each material, pressure derivatives of bulk modulus
B, (Thurston et al., 1966; Nielsen, 1986; Clayton, 2009) are also listed. Finally, maximum HEL stresses Pyg. from shock
experiments (Wackerle, 1962; Fowles, 1967; Graham, 1972b; Lang and Gupta, 2010) are shown for reference, normalized by
second-order moduli for shocks in corresponding directions. The domain of validity of elastic analysis can be estimated as
V/Vo2(C11—PueL)/C11.

4.3. Results and discussion

Predicted shock velocity D versus particle velocity » is compared with experimental shock compression data of Fowles
(1967) in Fig. 8 for X-, Y-, and Z-cut quartz specimens. Experimental data are obtained from plane-wave explosive loading
tests in which two-wave structures were often recorded (Fowles, 1967). Data considered here correspond only to the first,
elastic shock wave in such tests. Velocities are normalized by longitudinal linear elastic wave speed

Co=(C11/pp)"/%. (4.59)

Lagrangian fourth-order constant C;q1; for each orientation (Table 4) was fit to the data in Fowles (1967). Eulerian fourth-
order constant C111; in Table 4 has been fit to this same data in an analogous fashion here. Both Lagrangian and Eulerian fits
are considered adequate for each orientation. The unusual nonlinearity (i.e., curvature) in the D-» data was noted in Fowles
(1967); Eulerian theory predicts relationships with greater curvature. Hugoniot stress (i.e., P) normalized by Cy; is shown for
each orientation in Fig. 9, along with experimental data (Fowles, 1967). Predictions marked “4th order” are obtained using
complete solutions and all material constants. Predictions marked “3rd order” assume C1q1; =0 or €111 = 0. Predictions
marked “2nd order” assume Ci1; = Cq111 =0 or €111 = C1111 =0. These designations apply for respective Lagrangian or
Eulerian solutions. Predictions marked “2nd order mixed” are discussed later in Section 4.4. For each orientation, 4th order
theories are required to accurately match the experimental Hugoniot data; 2nd and 3rd order models are insufficient.
Predicted shock velocity D versus particle velocity » is compared with experimental shock compression data of Graham
and Brooks (1971) in Fig. 10 for X- and Z-cut sapphire. Experimental data are obtained from flyer-plate and plane-wave
explosive loading configurations; in the latter, two-wave structures were sometimes generated (Graham and Brooks, 1971).
Data considered here correspond only to the elastic shock, with the secondary, slower “plastic” wave in which the HEL was



J.D. Clayton / J. Mech. Phys. Solids 61 (2013) 1983-2014 2007

a b

0.16 7 0.16 . - . .
4th order Lagrangian 7/ = 4th order Lagrangian //
. o ort Lagrangian rd - 510 oderLogranian s
0. 12 3rd order Eulerian Ve 0 1 2 3rd order Eulerian /./
2nd order Lagrangian P 2nd order Lagrangian s <
2nd order Eulerian Va J 2nd order Eulerian Px -1
- 2nd order mixed # -] o 2nd order mixed e -
- 3 . - 4 )
Q 0.08 O  Experiment /_/ ’,’.;’/ /—< Q 0.08 O Experiment - ’/’::v/“
Q P e a ez
o gz e e ET
. =" o =
1 d
0.04 P 0.04 >
Quartz X Quartz’ Y
.00 ; : 0.00
1.00 098 096 094 092 0.90 1.00 098 096 094 092 0.90
VIV, VIV,
0 0
0.24 T T T T T
4th order Lagrangian
4th order Eulerian
020 3rd order Lagrangian
3rd order Eulerian
2nd order Lagrangian
- 0.16 2nd order Eulerian
Nl = === 2nd order mixed
g 0.12 [m] Experiment p
[0y _
- —
0.08 -
.2 - o=
e
0.04 ==
- Quartz Z

0.00 ' :
100 098 096 0.94 092 090 088
VIV,

Fig. 9. Predicted and experimental (Fowles, 1967) Hugoniot stress for quartz, normalized by longitudinal second-order elastic constant Cq;: (a) X-cut,
(b) Y-cut and (c) Z-cut.
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Fig. 10. Predicted and experimental (Graham and Brooks, 1971) shock velocity versus particle velocity for sapphire, normalized by linear elastic wave speed C,.
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Fig. 11. Predicted and experimental (Graham and Brooks, 1971) Hugoniot stress for sapphire, normalized by longitudinal second-order elastic constant Cy:
(a) X-cut and (b) Z-cut.
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exceeded not addressed. Velocities are normalized by wave speed (4.59). Lagrangian fourth-order constant Cy1; for each
orientation (Table 4) was fit to this experimental data in Graham (1972a). Eulerian fourth-order constant 1117 in Table 4 has
been fit to this same data here. Considering scatter in the data, both Lagrangian and Eulerian fits are adequate for each
orientation, giving nearly linear ®-v curves over the relatively small compression range for which sapphire remains elastic
(V/V20.95). Hugoniot stress (i.e., P) normalized by C; is shown for each orientation in Fig. 11, along with experimental
data (Graham and Brooks, 1971). For each orientation, 3rd and 4th order Lagrangian and Eulerian theories are all capable of
accurately matching the experimental stress data. Sufficiency of 3rd order Lagrangian theory was also noted in previous
work (Clayton, 2009). Second-order elastic models are inaccurate, with 2nd order Eulerian theory too stiff and 2nd order
Lagrangian theory too compliant.

For predictions of the shock response of diamond, all higher-order elastic constants in Table 4 have been taken
directly from the quantum mechanical results of Nielsen (1986) since experimental measurements of third-order
constants of diamond apparently have not been reported. Predictions of normalized shock velocity and Hugoniot
stress are given in Fig. 12(a) and (b), respectively, compared with experimental data of Lang and Gupta (2010). These
data, obtained from flyer-plate experiments, consist of five tests for which a high HEL was observed (peak shock
pressures of ~90 GPa) and six corresponding to peak shock pressures in excess of ~115 GPa, which demonstrated a
marked reduction in HEL strength (Lang and Gupta, 2010). No fitting or adjustment of third- or fourth-order
Lagrangian or Eulerian constants has been undertaken, so the comparison of results can be deemed as much a
confirmation of accuracy of atomic calculations as a test of relative merits of Lagrangian and Eulerian theories of
various orders. From Fig. 12(a), 4th order Lagrangian theory provides a better fit to shock velocity than 4th order
Eulerian theory at larger particle velocities corresponding to the higher HEL, with 4th order Eulerian theory tending
to overestimate ®. Conversely, at smaller particle velocities corresponding to the lower HEL, 4th order Eulerian

a b
0.16 T T :
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+ 4th order Eulerian 4th order Eulerian 7
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3rd order Eulerian 0 1 2 3rd order Eulerian o4 Pyl
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Fig. 12. Predicted and experimental (Lang and Gupta, 2010): (a) shock velocity versus particle velocity, normalized by linear elastic wave speed Co and
(b) Hugoniot stress, normalized by longitudinal second-order elastic constant Cq.

Table 5
Thermodynamic predictions.

Material Shock direction V/Vo 6/60 0/6 ry/Cg ;7/(\8 p/pP" pP/P"
Lagrangian Eulerian Lagrangian Eulerian Lagrangian Eulerian
Quartz X 0.96 1.028 1.028 0.002 0.002 1.0002 1.0002
0.92 1.055 1.052 0.030 0.050 1.0013 1.0024
0.88 1.079 1.069 0.133 0.418 1.0032 1.0039
Y 0.96 1.028 1.028 0.003 0.002 1.0002 1.0002
0.92 1.055 1.052 0.036 0.039 1.0016 1.0019
0.88 1.079 1.069 0.153 0.300 1.0036 1.0079
z 0.96 1.022 1.022 0.007 0.006 1.0004 1.0004
0.92 1.043 1.041 0.066 0.071 1.0017 1.0017
0.88 1.062 1.054 0.246 0.373 1.0033 1.0042
Sapphire X 0.96 1.049 1.049 0.016 0.015 1.0008 1.0007
0.92 1.095 1.091 0.141 0.135 1.0028 1.0024
0.88 1137 1.119 0.483 0.531 1.0053 1.0055
z 0.96 1.050 1.049 0.014 0.012 1.0007 1.0006
0.92 1.095 1.091 0.122 0.121 1.0025 1.0024
0.88 1137 1.120 0.430 0.578 1.0049 1.0071
Diamond X 0.96 1.031 1.031 0.033 0.042 1.0003 1.0003
0.92 1.060 1.057 0.255 0.311 1.0009 1.0010

0.88 1.086 1.075 0.811 0.987 1.0017 1.0024




J.D. Clayton / J. Mech. Phys. Solids 61 (2013) 1983-2014 2009

theory better represents experimental shock velocities, with Lagrangian theory yielding too-low values of ®. For both
clusters of experimental shock velocity data, 3rd order Eulerian theory provides a better fit than 3rd order Lagrangian
theory. As shown in Fig. 12(b), all 4th order and all 3rd order models provide a reasonable prediction of longitudinal
shock stress, though 3rd order Lagrangian theory might be considered overly compliant for V/V, < 0.95. Second-order
elastic models do not accurately predict Hugoniot stress, with 2nd order Eulerian theory too stiff and 2nd order
Lagrangian theory too compliant.

Considering key findings reported in Section 3.5 and that quartz, sapphire, and diamond all have By>4, the lack of
definitively greater accuracy of Eulerian theory relative to Lagrangian theory is somewhat unexpected. However, quartz and
sapphire are not cubic and have directionally dependent covalent and ionic bonding, so trends from the ideal model of
Section 3 that enforces Cauchy relations and isotropic symmetry for third-order constants may not apply. Diamond has
strong covalent bonding (unlike the noble metals for which anharmonic properties are more symmetric, Hiki and Granato,
1966), and examination of all third-order constants in Nielsen (1986) shows that (3.13) and (3.16) are not well respected.
Nielsen (1986) reported that 4th order Eulerian theory was better able than Lagrangian theory to collectively fit atomic
simulation results for spherical deformation and straining along [100], [110], and [111] in diamond.

Predictions of fourth-order Lagrangian and Eulerian theories for temperature rise # (normalized by reference
temperature ¢p), entropy jump across the shock # (normalized by specific heat at constant pressure c2), and Hugoniot
stress P (normalized by uniaxial isentropic stress P") are listed in Table 5. Isentropes are computed as

P = —](C]]E + % 6]]]52 —+ %611]]E3), (Lagrangian) (460)

P’ = —_]_3(C11D + % é]]]Dz + %611111)3). (Eulerian) (461)

Predicted temperatures are similar for Lagrangian and Eulerian theories, with temperature rise slightly smaller in the latter
at large compression. Predicted entropy production is positive in agreement with (4.9) and is of the same order of
magnitude among theories, with larger 5 predicted by Eulerian theory at large compression. Recall from Section 4.1 that the
present analytical solutions have assumed a simple form of specific heat wherein the contribution to internal energy from
entropy is linear, i.e,, (4.31) and (4.43). When higher-order Griineisen parameter Iy = 0 and co=c}, these approximations are
most accurate for n<2¢§. From Table 5, such conditions hold for V/V>0.92. But for very large compression (i.e.,
V/Vy=0.88), entropy production (especially in diamond) is large enough that a higher-order representation of entropy,
e.g., (4.21) or (4.22), may be prudent. Examination of stresses in Table 5 shows that P/P" < 1.01 in all cases, justifying
isentropic assumptions used in previous stress analyses (Fowles, 1967; Clayton, 2009).

Upon examination of HEL stresses in Table 4, results in Table 5 are deemed valid for Z-cut quartz to V/V,=0.88.
However, for X- and Y-cut quartz and for diamond, the HEL is exceeded at V/V, = 0.88, and results are most valid only for
V/V(>0.92. For sapphire, the elastic range is even smaller and compression, in experiments, is elastic only for V/V, = 0.96.
Values listed in Table 5 can be considered extrapolations when compression exceeds the HEL. Above the HEL, a nonlinear
theory incorporating dislocation slip/twinning (Clayton, 2009, 2010b; Clayton and Knap, 2011a, 2011b) and cleavage fracture
(Clayton, 2006, 2010a, 2011b) may be needed, accounting for anisotropic inelastic deformation mechanisms and their
contributions to entropy production and temperature. If large densities of lattice defects are generated at shock pressures at
or above the HEL, consideration of their effects on dilatation (Clayton, 2009, 2011a; Clayton and Bammann, 2009) and
tangent elastic moduli (Clayton and Chung, 2006) may be worthwhile.

4.4. An alternative lower-order theory

Purely Lagrangian and Eulerian theories have been formulated using respective strain measures E and D. These tensors
are not the only possibilities for use in thermoelastic potentials. For example, a generic symmetric strain, in material
coordinates, that vanishes when F =1, can be defined as a linear combination of E and D:

G=(1—y)E +4D, 0<y<l. (4.62)
Lagrangian (Eulerian) theory is recovered when y =0 (y = 1). In what follows, take y = 1, giving®
G=}(E+D)=}(F'F-F'F")=4U’-U>), (4.63)
where U = R'F is the right stretch tensor. Free and internal energy densities per unit reference volume are
Y =¥(G,0, U=UG,n). (4.64)
Thermodynamic stress, entropy, and temperature obey

§—0%/9G=00/0G=8", n=—a¥/o0, 6=l on. (4.65)

5 The author is grateful to M. Ortiz for suggesting, before calculations in the present work were undertaken, the possible utility of a strain such as
(4.63).
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Components of first Piola-Kirchhoff stress are obtained from chain rule differentiation:

oU ol oGy 14

—1p-1p-1
Py = F ~ 9y oF 550 + Fye Fjm Fim), (4.66)

where U can also be replaced with ¥. Isentropic second-order elastic moduli are defined, in Voigt notation, as
C. = 0°U0/0G,0Gy. (4.67)

A complete three-dimensional thermomechanical theory of nonlinear elasticity can be formulated in terms of G
paralleling steps taken in Section 2. For modeling 1-D shock compression, a scalar theory along the lines of those in terms of
E and D in Section 4.1 is sufficient. For compression parallel to the X =X; direction, scalar uniaxial strain is

G=Gn =3 (En + D)= (F-F ) =47¢*-1). (4.68)
For the present purpose, the following lower-order thermodynamic potentials suffice:
02101162 + 6on, '[DZlCnGZ. (469)

In this representation, temperature is constant, thermoelastic coupling is omitted, and isothermal and isentropic second-
order elastic constants are indistinguishable and are both represented by C;. Following the same arguments used to arrive
at (B.3), this second-order elastic constant can be considered equivalent to second-order constants of Lagrangian and
Eulerian theories of Section 4.1. Hugoniot stress P is equivalent to the second-order elastic isentrope, and is calculated using
(4.66) and (4.68) as

P=-Py1=-3F+F?S=-1]1+J"0/oC=-1]>(1 +]HGC11 = (1 +JH(1-J*C11. (4.70)

This relation has the physically appealing feature that |P|— oo as J—0, co.

Predictions of (4.70) are labeled “2nd order mixed” in Figs. 9, 11, and 12. Hugoniot stresses predicted using this mixed
Eulerian-Lagrangian theory are more accurate than those predicted using purely Eulerian or Lagrangian 3rd order models
for X- and Y-cut quartz [Fig. 9(a) and (b)] and X- and Z-cut sapphire [Fig. 11(a) and (b)], and for these crystals and
orientations are of comparable accuracy as 4th order theory. Predictions from (4.70) are of comparable accuracy as those of
3rd order Eulerian or Lagrangian approaches for Z-cut quartz and diamond [Figs. 9(c) and 12], but in these two cases are less
accurate than 4th order theory. The apparent success of (4.70) is not surprising considering that 2nd order Eulerian and
Lagrangian models tend to respectively over- and under-predict experimental Hugoniot stress data. As noted previously, for
many, if not most, kinds of single crystals only second-order elastic constants have been measured, with third- and higher-
order constants unknown. These findings suggest that, for a single crystal ceramic or mineral undergoing finite elastic
compression, a best estimate of Hugoniot stress might be obtained using one-parameter equation (4.70) if only second-
order constant Cq; is available.

5. Conclusions

A comprehensive theory of Eulerian thermoelasticity has been formulated and compared with traditional Lagrangian
theory. Analytical solutions have been compared for homogeneous spherical deformation, uniaxial strain, and simple shear,
for cubic crystals with fully anisotropic linear properties (three independent second-order elastic constants) but
directionally independent anharmonicity (one independent third-order constant). For a typical value of pressure derivative
of the bulk modulus of four, Eulerian solutions tend to demonstrate more physically realistic behavior (i.e., rapidly
increasing stress and energy at very large deformation) and greater stability (e.g., positive strain energy to very large
deformation).

An analytical solution, accurate to fifth order in strain, has been derived for the uniaxial shock response in Eulerian
thermoelasticity, paralleling a derivation for Lagrangian theory. Entropy production across the shock is minimally third
order in strain for either theory. Both Eulerian and Lagrangian treatments provide sufficient accuracy when fourth-order
elastic constants are incorporated, with neither theory demonstrating consistent or definitive advantages over the other in
describing Hugoniot data for quartz, sapphire, or diamond. A second-order model incorporating a mixed strain tensor that is
an average of Lagrangian and Eulerian strains has been shown to provide a reasonable approximation of the Hugoniot stress
for each of these materials. This strain measure is recommended for predicting the uniaxial shock response of other hard
anisotropic crystalline materials if higher-order elastic constants are unknown.

Appendix A. Kinematics

Let x and X denote spatial and initial material coordinates of an element of a solid body, related by sufficiently smooth,
and one-to-one at any time t>0, functions

x=x(X,t), X=X(x1). (A1)
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The deformation gradient F(X,t) is

F=Vox; Fy=o0x;/0X;=0)x;. (A.2)
The inverse deformation gradient F~!(x, t) is

F'=vVX; F;' =0X;/ox; = 0. (A3)

Partial coordinate differentiation at fixed t obeys 9;( - ) = Fyo;( - ). The following identities (Clayton, 2011a) that follow from
FF~' =1 and VoF = V,Vx are used later:

oOF;' JoF, = —Fp!Fii',  oxFy = ojFix. (A4)

Current volume V and mass density p are related to initial volume Vy and initial density p, of a material element by Jacobian
determinant J(X, t):

V. po

V—O_;zjzdetF. (A.5)
Lagrangian Green strain E(X, t) is defined as

E=1(F'F-1); Ey=l0axx—oy). (A.6)
Letting u(X, t) denote displacement and u; = u;5y,

Vou=F-1; du,=Fy-dy: Ey=230y + ojuy + djupdjus). (A7)
The following identities apply (Clayton, 2011a):

L = SGuFy +auF. oL . % —JFi'Fj. (A8)
Eulerian strain D(x,t) is defined as

D=1(A-F'FT"); Dy=16y-aXiaX)). (A.9)
Letting u(x, t) denote displacement,

vu=1-F; oux=6x—0Xx; Dy=2x01n + ojui—0,uio,u;)sudy. (A.10)
Comparing (A.7) and (A.10), and noting that

oy, = A8y + dju;) = Ay + O(l|Vul?), (A11)
it follows that E and D agree to first order in displacement gradients:

D=E + o(||Vul)). (A.12)
From (A.4) and identity o det A/oA; = A;' det A,

%’i = %FZMF,‘IJF,;} + Fy Fi). % = JFuFy. (A.13)
From definitions (A.6) and (A.9), for ||E|| <1 and ||D|| < 1, the following series apply:

D=1[1-(1+2E)"1=41-(1-2E + 4E>-8E° + ---)| = E-2E* + 4E*—..., (A14)

E=1[1-2D)"-1]=J[1 + 2D + 4D* + 8D + --)-1] =D + 2D* + 4D° + ... (A.15)

Consider the polar decomposition of F:

F=RU=VR, RR'=1, U=U", v=V" (A.16)
Define the Eulerian Almansi strain e(x, t) by

e=1(A-FF"), e;=1(6i-0XxaXx) = N + ojui—auyojuy). (A17)

When there is no rotation, F = F, 0;X) = 0k X16iy6ir, and du; = Jjuy, leading to e =D under these conditions. From the polar
decomposition (A.16), strain tensors can be expressed in terms of stretches as

E=1W?*-1), D=1(1-U?), e=l1-v? (A.18)
Spatial velocity gradient I(x, t) and its symmetric part d(x,t) are

I1=Vo=FF", d=1d+1"); lj=opi=0%, dj=20% +ax. (A.19)
It follows that

E=F'dF, D=F'dF " (A.20)
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Of particular interest are situations in which deformation is spherical (isotropic):
F=]"21, F'=]'°1; E=1¢*?-11, D=1a-J? )1 (A21)
In this case, the following limits apply as J =V /V,—0, where ||A|| = (A : A)'/?:

HimIEll=v3/2;  lim|ID|| - co. (A22)

Appendix B. Thermomechanical derivations

Material coefficients defined as derivatives of free or internal energy with respect to E are related to those with respect to
D as follows. First, consider thermal stress coefficients. Setting Fy = F]’i] =&y in the reference state, (2.27) yields

Bou=Bows  B'ou=(0Ba/00)lo = (9P u/0)lo =5 0 (B.1)
Recalling that ¢ = ¢, or using (2.36), it follows that Griineisen parameters
70(1 :BOG/CO :ﬁOa/CO = fO(la f’O(x = (afa/aﬂﬂo = (afa/a'])lo = f’O(r (Bz)

Now consider second-order elastic stiffness coefficients. From (2.52), noting also that P =0 in the reference state,

A7

=0 A0 =
COU(/}’ = CO(l/}’ C(I)(t/i = C()a/i' (B3)

It follows that for higher-order thermal stress coefficients f,; < Boyxi,

“ _ ~0 —9 _ _ _ _

Boyke—Poykr = —(0C g/ 90)|o + (9C ./ 00)lo = Bowdp + Pokdn + Powdx + Bojdi- (B.4)
Similarly, for higher-order Griineisen parameters I'g,s <> oyt

Fogxa—T ok = —951(067]”/ a9)|o + 951(0613:@/ 00)lo = Tody + Lo + Tondik + Lok (B.5)

Note that by definition, T'gas = [0(8,/C)/0Es]lo, and that T',s#p,s/c in general, since c may depend on E when f’,#0. A similar
statement applies for /o,. Finally consider third-order elastic coefficients. Differentiating (2.50) with respect to F gives
(Clayton, 2011a; Clayton and Bammann, 2009)
W PPy oA _
UmN = OF0F i 0Fmn  OFmnoF,  oFmn  oFmy
= FiFiFmmC yramn + SimFiCynie. + SkmFirCyne + SiFmmCrimn
= FuFixFmmCximn + 8imFrg Aqnia. + SkmFrgAar + 6itFrn Amnint —(im Fj FrgPat + SkmF i Fig' Par + SikFjm Fxa Pav)-

A (FinFuCnmr + 53Sy1)

(B.6)
Differentiating (2.51) with respect to F gives

O i o A _ _ i
Aifiamn = Sg— " (Fp Fre Fyr' For Fii' Fsi Crors—Fyy Pi=Fyi' Py—Fjon FimFinPin)
m

= Fy' Frx FumFir' For Fii! s FwFu Crarsuv—(FpmF i Fri Py For Fi Fs! Crars + FrmFriFri Fir' For Fii! Fsi' Crars
+Fjm Fai Fof FriFot Fi Fsi! Crars + FamFi Fof FreFje' Fi Fs;' Crars
+FimFi Fo Fri Fir For Fs Crars + FsmFat Fril Fri Py For Fi! Crars)
—(Fp! Aitmn + FLi' A + Frg' Fig FepAipmn + SmiFjg Frg Pin)
+FimFniPic + FinFyi Py + Fp FgFrg FioPip + FrFrgFig FipPip- (B.7)
Equating (B.6) and (B.7) produces a relationship between third-order tangent elastic coefficients at any deformation:
Cyamn = Fr' Foi' Fj ' Fol Fit Fr Fii s g P FronFumC pagstu
—(F5" Fyi F Frt FanFomFir' For Fie' Fsi Crors + Fri' Fi Fit FFainFrm ' oy i Fsi' Crrs
+F;i' Foi' Fick Frt FyimF i Fat For Fiid Fsi Crars + Fi' Fiit FieFri Fa FomF e Fir' Fii' Fs! Crars
F; Fp Foh Frp FomFonFrt Ft Fir For Crors + Fri Fo Fra Frt FamFsmFrt Fri Fir! Fot Crags)
~(Fp! FraFii' FaAiimy + Fii ' Fii Fit FanAigmn + Frgl Fro Fi' FaAikmn
+Fi FuiFiaeFrq At + FaieFi Fii FgAuar + Fii' Ficd Frg' FuinAmngt)
+Fii FyiFi FiaeFgPar + Fi Fxi FionFaimFig Pat + Fi Fick Fym Fa FrgPat
+Fjm FuimFik FakEii Pic + Fii Fxi FonF i Fioe Py + Fion FrnFrg FagFie' Pic
+F Fas FimFumFi Pic—Fr Fro Fd FatFr Pin. (B.8)
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This equation applies analogously for either isothermal (ﬁj,(LMN,CZKLMN) or isentropic (EZKLMN,CZKLMN) coefficients. In the
undeformed stress free reference state, using (2.50) and (B.3), (B.8) yields the following relationship between third-order
isothermal elastic constants:

0 —0 —0 —0 —0 —0
Coykevn = Cogremn + ik Copmn + 1Comn + M Coxyn + SINCokym
—0 —0 — —0 —0 —0 — —0
+6jk Conmn + SmComie + I Comnn + SNCome + SkMCoprn + SknCoyrm + SmCopin + SINCogrm- (B.9)
Similarly, for isentropic constants,

Al = = =1 1 =
Coprimn = Cogrmn + ik Copmn + LCopmn + M Coxyn + SinCoxym
-+ Commm + ImComie + 31 Comm + INComke + kv Copu + v Coyu + SmConr + SinCoprar- (B.10)

These derivations—which effectively equate strain energies to third order in Taylor series with respect to F-lead to relations
among third-order elastic coefficients equivalent to those derived elsewhere (Weaver, 1976; Perrin and Delannoy, 1978) by
applying series approximations [e.g., (A.14)] and equating coefficients of like terms in Lagrangian and Eulerian energy
potentials.
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